
Origami:
A High-Performance 
Mergesort Framework
Arif Arman and Dmitri Loguinov
Texas A&M University



About Me

I am a Ph.D. student at Texas A&M 
University. My research focus is on high-
performance computing and sorting, algorithm 
optimization for the underlying hardware, 
and information retrieval at a large scale. 
These require a deeper understanding of 
Computer Systems and Architectures -- which 
are my favorite topics.

2



Agenda

» Introduction

» Pipeline Overview

» Tiny Sorters

» In-cache Merge

» Out-of-cache Merge

» Experiments

3



Motivation

» Mergesort is highly appealing in real-world sorting tasks 
for several reasons

• Distribution insensitive

4

MSB Radixsort

Poor unless uniform

Quicksort
Samplesort
Combsort

Certain worst-case 
inputs



Motivation

» Mergesort is highly appealing in real-world sorting tasks 
for several reasons

• Sequential processing of input/output

5

PCIe 5.0



Motivation

» Mergesort is highly appealing in real-world sorting tasks 
for several reasons

• Well-suited for multi-core parallelization

• Yields new optimized kernels for small inputs
6

...

...Tiny 
Sorters



Motivation

» Many mergesort variants have been proposed, however ...

• None examine how to optimize individual phases of the 
sort pipeline

• Majority single threaded or, if parallel, bottlenecks on 
memory bandwidth

• Do not offer a unifying solution simultaneously optimized 
for scalar, SSE, AVX2 and AVX-512 architectures

7



Contribution

» Introduce Origami, a highly optimized, distribution-
insensitive, parallel mergesort framework

» Formalize a four-phase computational model
• Examine how to achieve maximum speed at each phase

» Develop end-to-end sort by efficiently connecting the 
optimized components

» Generalize the algorithms for Scalar, SSE, AVX2 and AVX-512

» Fastest mergesort (1.5-2x speedup) with near perfect scaling
8



Agenda

» Introduction

» Pipeline Overview

» Tiny Sorters

» In-cache Merge

» Out-of-cache Merge

» Experiments

9



P4. Out-of-cache merge w/ 
partitioning

P3. Out-of-cache merge

Pipeline Overview

10

P1. Tiny sorters

P2. In-cache merge

Unsorted input, broken to L2 
cache size blocks

Sorted C size blocks

...

...

...

...

Sorted N/k size lists

Merge 
tree 

Partition
Merge tree 
from P3

...

...

Final sorted output

Binary 
merge



Agenda

» Introduction

» Pipeline Overview

» Tiny Sorters

» In-cache Merge

» Out-of-cache Merge

» Experiments

11



Sorting Networks

» In practice, presort every m items with a different algorithm

» Sorting networks have proven to be the fastest option for 
such small sorts

12

swap(x, y):

tmp = min(x, y)

y = max(x, y)

x = tmp

Sorting Network for 4 items

0

1

2

3



SIMD

» SIMD (single-instruction multiple-data) allows W (SIMD_WIDTH) 
scalar swaps with a pair of _mm_min, _mm_max intrinsics

» Min/max must be branchless for maximum speed
• Vectorized min/max intrinsics by design branchless

• For Scalar, use cmov (conditional move) instruction
• Use ? in C/C++ (e.g., tmp = x < y ? x : y; for min(x, y))

» Stack multiple registers and vertically sort W columns in 
parallel -- term this technique csort

13

14 6 8 11

4 12 2 15

4 6 2 11

14 12 8 15
swap

distribution 
insensitive



Tiny Sorters: Outline

14

Store sorted runs of length W

Sort columns Transpose

Load keys

W

W

Matrix-column merge

Sort columns

r
... ...

..

..

Matrix-row merge

Transpose

W

Store sorted run of length rW

Load keys

Prior works

Typically, 
r = # of 

registers R 

Sort every W keys in-register Sort every rW keys in-register

Origami



Matrix-Column Merge (mcmerge)

» Goal: sort matrix in column-major order
• Use merge networks (reduced from sorting networks)

• Group items of matrix in partial columns of r/2 x 1

• Run swaps of corresponding merge network

• With SIMD, swaps of a layer runs in parallel

• With len(keygroup) > 1, replace min/max for a swap with 
MergeNetworkr -- term this cswap

15

6 30

14 33

19 45

28 48

10 46

20 49

29 50

34 53

0 2

1 3

4 6

5 7

Group 
keys 

MergeNetwork8 swaps

(0,4), (1,5), (2,6), (3,7)

(2,4), (3,5)

(1,2), (3,4), (5,6)

r

c



Matrix-Column Merge: Example

16

MergeNetwork8

(0,4), (1,5), (2,6), (3,7)

(2,4), (3,5)

(1,2), (3,4), (5,6)

6 30

14 33

19 45

28 48

6 30

10 33

14 46

20 49

10 46

20 49

29 50

34 53

19 45

28 48

29 50

34 53

6 14

10 20

46 30

49 33

19 29

28 34

50 45

53 48

(b) shufffle #1 (c) cswap #1, shuffle #2

(d) cswap #2, shuffle #3

(e) cswap #3 (f) final

(a) initial

6 14

10 19

50 20

53 28

29 45

30 46

33 48

34 49

6 20

10 28

14 29

19 30

33 48

34 49

45 50

46 53

6 30

14 33

19 45

28 48

10 46

20 49

29 50

34 53



Matrix-Column Merge: Summary

» Advantages
• Maximum utilization of data parallelism -- allows simultaneous 
operations on all W/2c pairs of matrices at no extra cost

• Number of steps is the depth of merge network, which is proved 
optimal for networks of <= 17 items

• Final reordering can be omitted for back-to-back merges

» Drawbacks

• With growing depth of merge network, shuffles become costlier
for large c

» Solution: transpose switch to Matrix-Row Merge at one point 17



Matrix-Row Merge (mrmerge)

18

34 29 20 10

53 50 49 46

6 14 19 28

30 33 45 48

34 33 45 46

53 50 49 48

6 14 19 10

30 29 20 28

33 34 45 46

48 49 50 53

6 10 14 19

20 28 29 30

(a) reverse 
bottom rows

(b) cswap (c) sort rows

largest(rowj) <= smallest(rowj+1)

1. transpose
2. csort
3. transpose

» Not significantly affected by increasing complexity of merge 
networks -- excellent for large matrix sizes

» However, has non-negligible minimum cost (e.g., two transposes)
• Makes it inefficient for short sequences -- in contrast to mcmerge



Matrix Transpose

» Transpose performed by a series of diagonal exchanges

» Typically done with two shuffle or permute intrinsics
• Port 5 pressure 

• Solution: replace some shuffles with blend (use port 0, 1 and 5)

19

c g k o

d h l p

a e i m

b f j n

i m k o

j n l p

a e c g

b f d h

i j k l

m n o p

a b c d

e f g h

_v0 = _mm256_shuffle_ps(v0, v1, 0x44)

_v1 = _mm256_shuffle_ps(v0, v1, 0xEE)

v = _mm256_shuffle_ps(v0, v1, 0x4E)

_v0 = _mm256_blend_ps(v0, v, 0xCC)

_v1 = _mm256_blend_ps(v1, v, 0x33)

transpose_v0

transpose_v1



Tiny Sorters: Summary

20

» Begin with mcmerge and switch to mrmerge

» Use the optimized transpose

» Sort m (in [W, RW]) items, completely in register

» Choice of m dependent on
• S1(m): P1 speed to sort m items

• Smerge: In-cache merge speed

• Optimal m minimizes

𝑓 𝑚 =
𝑆𝑚𝑒𝑟𝑔𝑒

𝑆1 𝑚
− log2𝑚



Agenda

» Introduction

» Pipeline Overview

» Tiny Sorters

» In-cache Merge

» Out-of-cache Merge

» Experiments

21



Merge Kernel

22

» Main building block of merge-based sorts: binary merge (bmerge)

» Up to log2 𝑛 passes over the entire data
• Significant in overall performance

» Require a fast kernel to merge two sorted registers

...

...

a0 a1 a2 a3

b0 b1 b2 b3

Matrix-Column Merge?

Matrix-Row Merge?

Rotate and swap

c0 c1 c2 c3

c4 c5 c6 c7

A

B

C

rswap



» Present works mostly use 
branching comparisons
• bmerge_v0

» Some attempts at branchless 
but still room for improvement

» Origami provides the fastest, 
purely branchless solution

Advancing Pointers

23

bmerge(Item *A, *endA, *B, *endB, *C):

load registers r0, ..., rk-1 from A; A += kW

load registers rk, ..., r2k-1 from B; B += kW

while A != endA and B != endB:

rswaps for MergeNetwork2k

store r0, ..., rk-1 to C; C += kW 

reload r0, ..., rk-1 from A or B

move A or B forward by kW

merge keys left in registers and the
unfinished list

if (A[0] < B[0]):

reload from A; A += kW

else:

reload from B; B += kW



» A trivial method is to use 
cmov instructions
• bmerge_v1

» However, SIMD _mm_load
intrinsics do not support 
conditional moves

Advancing Pointers

24

bmerge(Item *A, *endA, *B, *endB, *C):

load registers r0, ..., rk-1 from A; A += kW

load registers rk, ..., r2k-1 from B; B += kW

while A != endA and B != endB:

rswaps for MergeNetwork2k

store r0, ..., rk-1 to C; C += kW 

reload r0, ..., rk-1 from A or B

move A or B forward by kW

merge keys left in registers and the
unfinished list

flag = A[0] < B[0]

ri = flag ? load(A + iW) : load(B + iW)

A += flag ? kW : 0

B += flag ? 0 : kW



» Solution: use cmov to compute 
the pointer to load
• bmerge_v2

» Up to 50% faster than v0

» Checks end-of-buffer for both 
A and B; fails to keep 
pointers in register

Advancing Pointers

25

bmerge(Item *A, *endA, *B, *endB, *C):

load registers r0, ..., rk-1 from A; A += kW

load registers rk, ..., r2k-1 from B; B += kW

while A != endA and B != endB:

rswaps for MergeNetwork2k

store r0, ..., rk-1 to C; C += kW 

reload r0, ..., rk-1 from A or B

move A or B forward by kW

merge keys left in registers and the
unfinished list

src = flag ? A : B

ri = load(src + iW); i in [0, k-1]

A += flag ? kW : 0

B += flag ? 0 : kW



» Solution: bmerge_v3
• Use two pointers: loadFrom, 
opposite

• Update pointers based on flag

• Always use loadFrom for next 
group of keys and end-of-buffer 
checks

» Up to 86% faster than v0

» Removes speculation from control 
flow and makes it distribution 
insensitive

» Additional boost with multiple 
simultaneous merges

Advancing Pointers

26

bmerge_v3(Item *A, *endA, *B, *endB, *C):

load registers r0, ..., rk-1 from A; A += kW

load registers rk, ..., r2k-1 from B; B += kW

loadFrom = A; opposite = B;

while loadFrom != endA and loadFrom != endB:

rswaps for MergeNetwork2k

store r0, ..., rk-1 to C; C += kW 

flag = loadFrom[0] < opposite[0]

tmp = flag ? loadFrom : opposite

opposite = flag ? opposite : loadFrom

loadFrom = tmp

load r0, ..., rk-1 from loadFrom

loadFrom += kW

merge keys left in registers and the
unfinished list



» Load k > 1 keys from each buffer 
• Utilize registers

• Decrease loop overhead per sorted item

» Reduce number of swaps needed by the merge network
• Outputs k from 2k sorted items

• Latter half can be kept partially sorted – skip the swaps that 
involve registers rk, ..., r2k-1

• MergeNetwork8: 9 -> 8; MergeNetwork16: 25 -> 20

• Does not apply to SIMD since depth is not reduced

Scalar Merge Optimizations

27



Agenda

» Introduction

» Pipeline Overview

» Tiny Sorters

» In-cache Merge

» Out-of-cache Merge

» Experiments

28



» P2 finishes when threads are done sorting lists of L2-cache-size C

» In P3
• Threads continue independent merges, but out-of-cache

• Maximum achievable speed is that of memcpy
• Skylake-X i7 CPUs with DDR4-3200 quad channel memory max: 37 GB/s

• Vectorized bmerge_v3 exhausts this with just 3 threads

• One thread may be enough for older CPUs and dual channel memory

» Majority of existing works ignore and continue with binary merges
• A few use desired k-way merges but with limitations

• L3 residing shared merge tree with circular queue internal buffers ...

• L2 residing dedicated tree with fixed buffer, fixed k, and encoding-
decoding keys with insertion sort tie-breaker ...

Independent Merge (P3)

29

...



» Origami comes with L2-cache 
residing k-way merge trees (mtree)

» Each node performs 4-way merge
• Binary merges internally

• Tiny intermediate buffers (64-128 B)

• Root and leaves remain large

» k can be tuned
• Optimal choice depends on number of 
threads running, memory bandwidth, 
and L2 cache size

Merge Tree

30

... ... ... ...

...

4-way node



» P4 begins when the number of lists to merge becomes insufficient to 
continue independent merging

» Most prior work begins this phase with T (number of threads) lists
• Use binary-search based partitioning

• Partition the lists into T segments such that:

• Items in (Ai, Bi, ...) <= (Aj, Bj, ...) for i < j

• Ai + Bi + … = n/T

• Assign thread i to run T-way merge on (Ai, Bi, ...)
• May bottleneck on memory bandwidth and/or contain stragglers

» Others shrink T as merge nears the end, or skip multi-threading 

Cooperative Merge (P4)

31

A B
A0 A1 A2 A3 B0 B1 B2 B3



» Origami P4 avoids bottleneck on memory bandwidth
• Merge must utilize >= k sequences

• k selected optimally by mtree in P3

» Avoid stragglers by creating many small jobs
• Reduce wait time for the fastest thread

• Leader thread performs initial partition

• All threads parallelly partition further

• Add k-way merge jobs to shared queue
• Threads draw their workload in parallel

Cooperative Merge (P4)

32



Agenda

» Introduction

» Pipeline Overview

» Tiny Sorters

» In-cache Merge

» Out-of-cache Merge

» Experiments

33



8-core Intel i7-7820X (Skylake-X)

L2 cache: 1 MB

Clock: 4.7 GHz (fixed)

SIMD Support: SSE, AVX2, AVX-512

Setup

34

32 GB DDR4-3200

Quad-channel

S1

S2

16-core dual socket Intel Xeon E5-2690 

L2 cache: 256 KB

Clock: 3.3 GHz

SIMD Support: SSE, AVX

256 GB DDR3-1333

Quad-channel



Tiny Sorters

35



Merge Kernel

36



In-cache Merge

37

SSE: 47%

AVX2: 96%

AVX-512: 59%

Up to 2.85x



Out-of-cache Merge

38

Est. upper bound for 
single core: 12.6 GB/s

v0: bmerge_v0 + binary 
tree

v1: bmerge_v3 + binary 
tree

v2: bmerge_v3 + quad 
node tree



Chunked-sort (In-cache)

39

Define Checkpoint

Ci = execution of 
phases P1 through Pi

SSE: 22%

AVX2: 71%

AVX-512: 65%



Chunked-sort (Out-of-cache)

40

SSE: 110%

AVX2: 100%

AVX-512: 53%



Distribution Insensitivity

41

Scalar

AVX2

SSE

AVX-512

D1: Uniform
D2: All same
D3: Sorted
D4: Reverse sorted
D5: Almost sorted (7th = MAX)
D6: Pareto
D7: Bursts of same keys 
(length from D6, key from D1)
D8: Random shuffle of D7
D9: Fibonacci



Multi-core Speedup

42

Scalar

AVX2

SSE

AVX-512

1 GB



Multi-core Speedup (Xeons)

43

SSE

64 GB



Database Queries (Xeons)

44

TPC-H Q1 TPC-H Q4

IRLbot (8 GB)

» IRLbot query

SELECT dst, COUNT(*) as cnt

FROM A INNER JOIN B ON A.src=B.src

WHERE A.outdeg < 1000000

GROUP BY dst

ORDER BY cnt DESC

» TPC-H queries

» Scaling 
factor: 100

Single-core: 37-60x

All-cores: 30-113x



» Origami offers a highly optimized mergesort framework
• Runs in a fast, constant speed for different data distributions

• Gains a nearly linear speed-up in multi-core environments

» The proposed components are flexible to accommodate future SIMD 
extension sets
• Programmer only needs to write a few arch-specific intrinsics

» Future work will examine
• External memory sorting

• Longer key/value pairs

• Incorporation into existing DBMS

Concluding Remarks

45



Thank You
Arif Arman

arman@tamu.edu

https://arif-arman.github.io


