
1

Typhoon: A 

 
Slice‐Scrambled 

 
In‐Place LSD Sort

Zelun Liu, Arif Arman, Dmitri Loguinov

Texas A&M University



2

Agenda

I.

 

Motivation

II.

 

Static Typhoon (S‐Typhoon)

III.

 

Typhoon

IV.

 

Experiments



3

_

 
_

 
_

 
_

 
_

 

_

 
_

 
_

 
_

 
_

MotivationMotivation

•

 

Sorting has become a ubiquitous building block behind many big-

 

data computational frameworks and distributed systems

MapReduce
Sorts key-value pairs

Databases
ORDER BY, GROUP BY,

sort-merge join

Graph Mining
PageRank,

graph inversion



4

_

 
_

 
_

 
_

 
_

 

_

 
_

 
_

 
_

 
_

MotivationMotivation

•

 

Sort performance can be formalized into 5 main parameters
−

 

Single-threaded speed
−

 

Robustness against non-uniform keys 
−

 

Memory usage
−

 

Stability
−

 

Multi-core scaling behavior
•

 

Existing methods exhibit tradeoffs between these objectives
−

 

Some are fast, but unstable or single-threaded only
−

 

Others are out-of-place or slow
−

 

Yet others can be fast on uniform keys & in-place, but slow on skewed 
distributions



5

_

 
_

 
_

 
_

 
_

 

_

 
_

 
_

 
_

 
_

MotivationMotivation
•

 

LSD radix sort is stable and insensitive to key distribution
•

 

However, for n input items
−

 

2n RAM usage (out-of-place)
−

 

Histogram pass on each level
−

 

Chokes on bursts of keys going 
into the same bucket

•

 

4n memory traffic per level
−

 

1n histogram 
−

 

1n read input
−

 

1n read for ownership on 
destination buckets

−

 

1n write to output
•

 

Can we do better?



6

Agenda

I.

 

Motivation

II.

 

Static Typhoon (S‐Typhoon)

III.

 

Typhoon

IV.

 

Experiments



7

S‐Typhoon: OverviewS‐Typhoon: Overview
•

 

Omit histogram pass
−

 

Static buckets allocated by oracle 
to correct size

•

 

Avoid read-for-ownership using 
Write-Combine (WC)

−

 

First write to in-cache tmp memory, 
then stream data using non-temporal 
stores to RAM

−

 

2n memory traffic per level
•

 

Examine fastest prior solution from 
Vortex (ASPLOS 2020)

−

 

Call this WCv1
−

 

Significant speed reduction on runs of duplicate keys



8

S‐Typhoon: Read‐After‐Write DependenciesS‐Typhoon: Read‐After‐Write Dependencies
•

 

We uncover that load-to-store 
forwarding stalls are responsible 
for loss of performance

•

 

New solution WCv2
−

 

Simultaneously reads multiple 
keys and loads their buckets pointers 

−

 

Uses conditional moves (cmov) to 
resolve conflicts (i.e., adjacent keys 
going to the same bucket)

−

 

Avoids read-after-write dependencies 
using a branchless solution

•

 

No reduction in performance 
compared to uniform keys



9

S‐Typhoon: HistogramS‐Typhoon: Histogram
•

 

The same performance problem 
arises for basic histograms (Hv1)

−

 

60% loss of speed on bursty input
•

 

This can be improved using parallel 
updates to k histograms (Hv3)

−

 

Better performance, but not ideal
−

 

Exhibits 4K aliasing and L1 
cache-set conflicts

•

 

By offsetting the start of each 
histogram

−

 

Speed remains constant 
for all run lengths

−

 

Even 30% faster on uniform compared to Hv1



10

Agenda

I.

 

Motivation

II.

 

Static Typhoon (S‐Typhoon)

III.

 

Typhoon

IV.

 

Experiments



11

Typhoon: Memory ManagementTyphoon: Memory Management

•

 

We now deal with dynamic resizing output buckets
−

 

Typhoon treats the available memory as a sequence of slices, which are 
contiguous regions of RAM consisting of multiple physical pages

•

 

After finishing an input slice, its pointer is released into the

 

stack
•

 

When an output bucket runs out of space
−

 

Slices are popped from the free stack to extend the bucket
−

 

A special slice database keeps track of slices allocated to each bucket
•

 

WCv3 is a slice-aware WCv2
−

 

Surprisingly, it runs 23% slower
−

 

Incorrect software/hardware prefetch
•

 

Novel non-linear prefetch in WCv4



12

Typhoon: HistogramTyphoon: Histogram
•

 

The histogram is almost 3×

 

faster than the splitter
−

 

Impact of incorrect prefetch becomes even worse –

 

47% drop in speed
−

 

Non-linear prefetch improves the result to 90% of static speed, but this is still 
not ideal

•

 

Instead of jumping over slices in the order

 

keys were stored in each bucket
−

 

We identify all contiguous runs of data within the original buffer and call Hv3 
on each of them

−

 

This reaches 100% of the static speed



13

Typhoon: Multi‐ThreadingTyphoon: Multi‐Threading
•

 

Threads mostly run independently of each other
−

 

Each of them maintains its own local stack of free slices, 
bucket pointers, and slice database

•

 

However, after each level of LSD, slice imbalance occurs
−

 

Some threads have more slices than average, others less
−

 

This leads to starvation in later levels
•

 

To address this problem
−

 

Typhoon runs a global stack of free slices, which is 
used after each level to rebalance the individual stacks

•

 

Additional caveats (see the paper)
−

 

Special effort is needed during the last level to properly 
allocate border slices shared across adjacent threads



14

Typhoon: Slice ReshuffleTyphoon: Slice Reshuffle
•

 

After the last level of LSD, the sorted data is stored in slices

 

randomly scattered in RAM
•

 

To put them in correct order
−

 

Typhoon internally keeps track of the PFNs (physical frame numbers) of 
allocated pages and slices they belongs to

−

 

All slices are first unmapped using OS virtual-memory primitives
−

 

And then remapped back to the same space using a permuted array of PFNs
•

 

Remapping operations are performed 
by all threads concurrently



15

Agenda

I.

 

Motivation

II.

 

Static Typhoon (S‐Typhoon)

III.

 

Typhoon

IV.

 

Experiments



16

Experiments: Typhoon vs. S‐TyphoonExperiments: Typhoon vs. S‐Typhoon

•

 

Typhoon shows no performance loss compared 
to S-Typhoon using slices as small as 8-16KB

Intel i7‐7820X, 8‐core Skylake‐X CPU, 4.7 GHz, quad‐channel DDR4‐3200 RAM



17

Experiments: Typhoon ScalingExperiments: Typhoon Scaling

•

 

1GB of uniform 32-bit keys, 16KB slices
−

 

Splitter scales perfectly until it starts saturating RAM bandwidth 
−

 

OS fails to linearly scale its remapping speed on the last level
•

 

Next, we examine full sorts using six datasets
−

 

D1 = uniform, D2 = almost sorted, D3 = Zipf frequency, D4 = Gaussian, D5 = uniform 
floats, G = IRLbot domain graph in-degree computation and inversion



18

Experiments: 32‐bit KeysExperiments: 32‐bit Keys

•

 

Typhoon wins in all six columns, runs in-

 

place, and posts a 60-90% improvement 
over the best prior methods

•

 

It operates using mostly scalar 
instructions and still doubles the speed 
of prior AVX-512 efforts

single-threaded

multi-threaded



Experiments: 64‐bit Key‐Value PairsExperiments: 64‐bit Key‐Value Pairs

single-threaded

multi-threaded

•

 

Typhoon improvement reaches 2.8x 
compared to best prior work

•

 

Multi-threaded, it runs into RAM 
bottlenecks, but still posts a 1.3-2x 
speedup



20

Experiments: 

 
In‐Place & 

 
Cross‐Platform

 

Experiments: 

 
In‐Place & 

 
Cross‐Platform

32-bit keys

64-bit key-value pairs



21

ConclusionConclusion

•

 

Across a range of 
desktop/server generations, 
Intel/AMD CPU offerings, and 
SSE/AVX2/AVX-512 
instruction sets, Typhoon 
delivers the best performance

−

 

38x faster than std::sort on 
AMD Zen5

−

 

Its speed is insensitive to key 
distribution

−

 

The only method that is both 
stable and in-place


	Typhoon: A Slice-Scrambled In-Place LSD Sort
	Agenda
	Motivation
	Motivation
	Motivation
	Agenda
	S-Typhoon: Overview
	S-Typhoon: Read-After-Write Dependencies
	S-Typhoon: Histogram
	Agenda
	Typhoon: Memory Management
	Typhoon: Histogram
	Typhoon: Multi-Threading
	Typhoon: Slice Reshuffle
	Agenda
	Experiments: Typhoon vs. S-Typhoon
	Experiments: Typhoon Scaling
	Experiments: 32-bit Keys
	Experiments: 64-bit Key-Value Pairs
	Experiments: �In-Place & �Cross-Platform
	Conclusion

