
Continuous Maximum Visibility Query
for a Moving Target

Ch. Md. Rakin Haider1, Arif Arman1

Mohammed Eunus Ali1, and Farhana Murtaza Choudhury2

1 Bangladesh University of Engineering and Technology, Bangladesh
{eunus,rakinhaider}@cse.buet.ac.bd

{arman}@cse.uiu.ac.bd
2 RMIT University, Melbourne, Australia

{farhana.choudhury}@rmit.edu.au

Abstract. Opportunities to answer many real life queries such as “which
surveillance camera has the best view of a moving car in the presence of
obstacles?” have become a reality due to the development of location
based services and recent advances in 3D modeling of urban environ-
ments. In this paper, we investigate the problem of continuously finding
the best viewpoint from a set of candidate viewpoints that provides the
best view of a moving target in presence of visual obstacles in 2D or 3D
space. We propose a query type called k Continuous Maximum Visibility
(kCMV) query that ranks k query viewpoints (or locations) from a set
of candidate viewpoints in the increasing order of the visibility measure
of the target from these viewpoints. We propose two approaches that
reduce the set of query locations and obstacles to consider during vis-
ibility computation and efficiently update the results as target moves.
We conduct extensive experiments to demonstrate the effectiveness and
efficiency of our solutions for a moving target in presence of obstacles.

Keywords: visibility query, moving object, spatial database

1 Introduction

Recent development in 3D modeling of urban environments and popularity of
location based services have increased the opportunity to answer different real
life queries involving the visibility of objects in the presence of 3D obstacles [1,5].
For example, in a smart city, surveillance cameras may need to track a moving
car continuously, and then a security officer may want to find the cameras that
produce the best view of the car at different timestamps in the presence of
obstacles. Consider another scenario, where a motor racing is telecasted, and
the director may want to continuously track the leading car and display the best
view of the leading racer continuously. In each of these cases, the objective is
to continuously find the viewpoint or camera location from a set of candidate
locations that has the maximum visibility of the moving target at particular time
instance. We call this new type of query Continuous Maximum Visibility Query

(CMVQ). In this paper, we investigate efficient techniques to answer the CMVQ
query. At each timestamp and for the current position of the target, the CMVQ
returns the query point that provides the maximum visibility. A generalization
of CMVQ is k-Continuous Maximum Visibility Query or kCMVQ that finds k
best query points (or cameras) in increasing order of their visibility of T .

Fig. 1: A target object T moving along the trajectory AB

Figure 1 shows an example of a CMVQ query, where Q = {q1, q2, q3} are
the locations of three security cameras, and O is a set of obstacles in a city. A
security officer wants to track a moving car, T , by using the installed security
cameras. At time t1, target T is at location l1 and q1 provides the maximum
visibility (or the best view) of T . But as the target changes its location and
moves from l1 to l2 and then from l2 to l3, the camera that provides maximum
visibility changes from q1 to q2 and then from q2 to q3, respectively.

The visibility of an object from a viewpoint depends on the distance, angle
and existence of obstacles between the target and the viewpoint. Thus the main
challenge of solving a CMVQ query is the computation of visibility of a target
object for a given set of viewpoints by considering a large set of obstacles. Visi-
bility computation has been extensively studied in computational geometry and
computer graphics, and different algorithms have been proposed to solve the
visibility problem. However, they rely on accessing all the obstacles [3, 14, 15],
and propose in-memory algorithms. Moreover, they only consider the visibility
in terms of binary measure, i.e., visible or non-visibile. An efficient approach
was suggested in [10] that overcame these drawbacks for visibility queries for a
static object. They compute visibility of a static target object from a set of query
points and find relative ranking of these query points. This approach needs to
update visibility of all the query points based on the obstacles that are inside
the view of those query points. Applying this technique to solve the kCMVQ
requires considering all the query points and obstacles within a certain range for
each position of the target repetitively, which will incur high query processing
and I/O overhead.

We have proposed techniques to solve kCMVQ queries with reduced process-
ing time and I/O. The novelty of our approach is that we do not need to access

all the obstacles and also do not require to update the visibility of the target
with respect to all the query points. Moreover, our solution relies on some pre-
computed data structure based on obstacles and query datasets to enhance the
query processing time. At each position of the target object we only use those
query points from which the target might be actually visible and consider only
those obstacles that can affect the visibility of the query points under consider-
ation. Also we have proposed an incremental approach that will avoid retrieving
the same obstacle multiple times for consecutive positions of the target.

In summary, the contribution of the paper can be stated as follows.

– We introduce the novel problem of Continuous Maximum Visibility (CMV)
query in a d-dimensional space.

– To solve CMV queries, we propose two different approaches. In the first
approach, we resort to pre-computation to answer the query fast at the
expense of high memory cost. In the second approach, we make a tradeoff
between pre-computation and memory usage.

– We conduct an extensive experimental study on two real datasets that demon-
strate efficiency of our algorithms.

2 Related Works

Visibility in Computational Geometry and Computer Graphics In com-
putational geometry, several approaches have been proposed to construct visibil-
ity graph and visibility polygon [3,4,14,15]. The problem of computing visbility
of input polygon P from a query point q, V (q) was first addressed for simple
polygons in [6]. A visibility graph is defined by a set P of n points inside a poly-
gon Q where two points p, q ∈ P are joined by an edge if the segment pq ⊂ Q [4].
They have given a nearly optimal algorithm for simple polygons and introduced
a notion of robust visibility for polygons with holes (non-simple polygons). Dif-
ferent works [2, 15] showed that query time for simple polygons can be reduced
to logarithmic bound using polynomial time preprocessing. In [3], Asano et al.
presented an algorithm with O(n) query time with O(n2) preprocessing time and
space. These algorithms efficiently constructs the visibility polygon with the ex-
pense of heavy preprocessing and/or accessing all obstacles present in dataset,
which makes this technique inappropriate for many spatial database applications
that handles a large number of obstacles.

Although computation of visibility is also an active study topic [13] in com-
puter graphics, their main focus is rendering a scene while we focus on calculating
the visibility of a specific target object from various query points.

Visibility in Spatial Queries kNN queries have been extensively studied in
spatial databases. Variants of kNN query consider the effect of obstacles while
measuring the distance between two objects. Visible NN (VNN) query [11] finds
the NN that is visible to a query point. Continuous Obstructed NN (CONN)
query [7] retrieves the nearest neighbor of each query point according to the

obstructed distance. Continuous Visible NN (CVNN) query [8] retrieves visible
nearest neighbor along a query line segment in the presence of obstacles.

A new type of query called the k Maximum Visibility (kMV) query was
introduced in [10], where for a given fixed target T , a set of obstacles O, and a
set of query points Q, the kMV query returns k query points in the increasing
order of their visibilities to T . Another study [5] quantified the visibility of a
target object from the surrounding area with a visibility color map (VCM). But
their approach has no notion of partial visibility and has not considered the case
of a moving target. A method is presented in [12] that considers partial visibility
of the target and support incremental updates of the VCM if the target moves
to near-by positions.

In this paper, we focus on answering kMV query for a moving target, that is,
we need to continuously find k query points based on the visibility of the target
T for each time instance.

3 Problem Formulation

Let O be a set of obstacles stored in R*-Tree, Q be a set of query points or can-
didate locations and T be a moving target object in a dataspace. In this scenario
Continuous Maximum Visibility Query (CMVQ) can be defined as follows:

Definition 1 (CMVQ). Given a set Q of n query points {q1, q2, ..., qn}, a set
O of m obstacles {o1, o2, ..., om} and a moving target object T that is at location
li at time instance ti in a d-dimensional space Rd, the Continuous Maximum
Visibility Query (CMVQ) for T continuously returns the query point q ∈ Q at
each time instance where visibility(q) ≥ visibility(qj) where qj ∈ Q \ q.

The generalization of CMVQ is kCMVQ, where k query points Q′{q′1, q′2, ..., q′k}
are returned at each time instance, where visibility(q′i) ≥ visibility(q′j), 1 ≤ i <
j ≤ k, and visibility(q′) ≥ visibility(q′′), for each q′ ∈ Q′, q′′ ∈ Q \Q′.

3.1 Preliminaries

The visibility of a target from a viewpoint varies with the distance and the angle
between the viewpoint (or camera) and the target. Similar to [5], in this paper,
by considering both of the above factors, we quantify the visibility as visual
angle that varies with both the angle and distance between the target and the
viewpoint. We assume each camera q has a field of view (FOV), a region beyond
which nothing is visible to that camera. If we use the visual angle measure, a
FOV produces a circular sector in 2D and a spherical sector in 3D which we call
the visible region (VR). Any target object lying in this region is point to point
visible from q in the absence of obstacles. For simplicity, we assume that an FOV
is triangular in 2D and conical in 3D.

Aggregated Visible Region and Potentially Visible Query Point Set
An AVR is a region formed by overlapping VRs of a set of query points and is
disjoint from all other AVRs. Any point within an AVR is visible only from a
specific set query points. We call this set of query points potentially visible query
point set (PVQS). While computing the visibility of a target object T inside
an AVR, we only need to consider query points in the corresponding PVQS.
The maximum number of AVRs generated by VRs of n query points in 2D is
3n(3n+1)

2 + 1 since each VR is bounded by 3 lines [9].

Blocking Set and Aggregated Blocking Set The visibility of a target object
T from a query point qi is affected by the obstacles that lie in the visible region
Vi of qi. All other obstacles can be safely pruned while computing the visibility
of T from qi. We call this set of obstacles a blocking set (BS) of that query
point. Each AVR Ai has an associated PVQS Pi. Since the target will be visible
only from the query point q ∈ Pi, the only obstacles to consider are the blocking
sets of each q. Thus, by combining BS s of each query point q ∈ Pi, we get an
aggregated blocking set (ABS) for the AVR.

4 Our Approach

In this section we present an algorithm to efficiently solve kCMVQ. The key
challenge of solving kCMVQ is that since the target object is moving, we need
to re-compute kMV query and update the ranking of query points for every
position change of the target. A straightforward approach is to run the kMVQ
[10] every time when T moves. This approach result in high processing and
I/O overhead as for each position change of the target we need to consider all
obstacles and query points that fall within the visible range. Since there can
be many common obstacles that fall within the range of two consecutive target
locations, the retrieval of same object occur multiple times.

To overcome the above limitation, we introduce an approach with reduced
I/O and processing overhead. To answer a kCMV Q we rely on pre-computed
data structure based on our obstacle and query datasets.

Preprocessing A moving target may change its position fast. For each position
update, finding the query points from which T becomes visible and retrieving the
required obstacles from the database by traversing the R*-Tree is costly and time
consuming. Since in our problem setting, we assume query points and obstacles
are static, we can precompute certain steps of our approach. Specifically, we
precompute (i) the set of AVR and their corresponding PVQS, as when T is in
an AVR, we only need to consider the query points of its corresponding PVQS,
and (ii) the BS of each query point q ∈ Q, so that we do not need to consider
the obstacles that has no affect on the visibility of T while processing a query.

As the first step, we construct the AVR set for the dataspace from the VRs
of the queries in Q. The query points whose overlapping VRs form an AVR are

recorded as its PVQS. We do not consider obstacles while computing AVRs.
Second, we generate the set of BS for every query. To reduce the complexity, we
maintain the minimum bounding rectangle (MBR) of V R, and use it to compute
the set of obstacles that are inside the V R. Note that, for each obstacle in a BS,
we store block number and entry number of the R*-Tree, and thus we can avoid
the R*-Tree traversal.

(a) Aggregated Visible Regions (b) Computing Blocking Sets

Fig. 2: Building Aggregated Visible Regions

Example 1. We will next show the construction of AVR, PVQS, and BS us-
ing an example. Figure 2(a) shows locations of a set Q of three query points
{q1, q2, q3}. First we take q1 and its VR ,V1. Since AVR set A is empty at
this point, V1 (p1, p2, p3) itself is added as an AVR. Next q2 is considered and
its VR V2 (p7, p8, p9) intersects with existing AVRs and creates new AVRs.
For example, V2 intersects with (p1, p2, p3) and divides it into four regions
(p1, p11, p14), (p2, p10, p20), (p3, p15, p18) and (p10, p11, p14, p15, p18, p20). For each
AVR its PVQS is updated, e.g., the region bounded by (p10, p11, p14, p15, p18, p20)
has PVQS {q1, q2} since overlapping VRs of these query points form the AVR.
This process is repeated until all query points are considered. To compute BS, we
start with q1 and compute MBR of VR V1. Let this MBR be RV 1. We perform
a range query in the R*-tree to find out the obstacles inside RV 1. We can see from
Fig. 2(b) that BS of q1 is B1= {o1, o2, o9, o10, o11, o12, o13, o15, o18, o19, o20, o22, o23}.
We compute BS of q2 and q3 in a similar manner.

4.1 AVR-BS Incremental Approach

We divide the dataspace into AVRs such that when T is inside an AVR, the
set of query points from which T is visible and set of obstacles that affect the
visibility of T remain same. Thus we do not need any extra I/O as long as the
target does not change its current AVR. Since neighboring AVRs are likely to
have many queries in common in their PVQS, we re-use the already retrieved
obstacles for those common queries when T moves to a neighboring AVR.

Algorithm 1: kCMVQ-Incremental(T,k)

Input: T a target object, k
Output: L a set of k query points ordered by visibility

1 Ac ← getCurrentAV R(T); Qc ← getCurrentQs(Ac);
Ba ← getBlockingSets(Qc)

2 while true do
3 if getTargetMovement(T) < th then continue
4 if isAVRChanged(T,Ac) then
5 Ac ← updateAV R(T); Qn ← getCurrentQs(Ac, T)
6 Qcom ← Qn ∩Qc

7 Qnew ← Qn \Qcom

8 for q ∈ Qnew do Ba ← Ba ∪ q.B
9 Qobs ← Qc \Qcom

10 for q ∈ Qobs do UpdateABS(Ba, q, Qn)
11 Qc ← Qn

12 L← ComputeV isibility(T,Qc, Ba, k)

Algorithm 1 shows our incremental approach for answering a kCMV query.
It takes target object T and positive integer k as input and reports k best query
points in set L ordered by the visibility of T . We update L only when T has
moved at least a threshold amount th. Algorithm starts with retrieving current
AVR Ac where T resides, PVQS Qc of Ac and ABS Ba for all query points
in Qc (Line 1). If T resides on the border of multiple AVRs, Ac stores the set
of AVRs. Qc is constructed by union of PVQS of each AVR in Ac. The while
loop iterates as long as the target continues querying in the dataspace. If target
changes its position within the current AVR, we compute visibility in Line 12. If
T moves to another AVR, we update current AVR Ac and compute a new query
set Qn by combining PVQS of AVRs that overlap with T . Line 6 calculates Qcom

whose corresponding blocking sets are already retrieved in previous iteration. At
Line 7 Qnew holds the new query points from which T is now visible. Line 8
updates ABS Ba. With the region change, T may also become invisible to some
query points from which it was visible earlier. Set of such query points Qobs is
computed in Line 9. For each such query point ABS is updated, i.e., we remove
obstacles from Ba that do not affect the visibility anymore. This is not a set
minus operation since an obstacle can be in multiple blocking sets. So removing
BS of a query point may remove some obstacles that are part of BS of some
other query points from which T is still visible. Line 12 then uses Qc and Ab to
compute visibility.

Example 2. We explain the incremental approach using AVRs A1 (p1, p2, p3, p4, p5)
and A2 (p4, p5, p6, p7, p8). In Fig. 3(a) at time t1 target T is completely inside
A1. The corresponding PVQS is P1 = {q1, q2} and ABS is Ba(1) = {B1 ∪
B2}. We retrieve all the objects of Ba(1) and compute visibility of the target
from the query points in P1. Then at t2, T moves to the region boundary be-
tween the AVRs A1 and A2. At this point we need to consider query point sets
P1∪2 = P1 ∪ P2 and set of obstacles Ba(1∪2) = Ba(1) ∪ Ba(2). T is now visible
from a new query point q3 that was not in P1 and thus the obstacles in its BS

(a) AVR-BS (b) VR-BS

Fig. 3: An Example Scenario of Approaches

B3 are not in the ABS that was computed in the previous step. We can now
update ABS as Ba(1∪2) = Ba(1) ∪ B3. We do not need to retrieve obstacles that
are already in B1 and B2.

4.2 VR-BS Approach

The incremental approach computes AVRs based on the given set of query loca-
tions. If a large number of query points are densely placed in the dataspace, the
number of AVRs can be huge. In some scenario, it may happen that the number
of AVRs may outnumber the number of obstacles in the dataset. For such cases,
the previous approach may not perform well. Thus, in this section, we introduce
another approach that preprocesses obstacle set to compute BS of each query
point and avoids computation of AVRs.

In this approach, we maintain an R*-Tree that holds MBRs of VRs (VRMBR)
of query points. We search the R*-Tree to find VRMBRs with which target T
overlap, and then we add the corresponding query point to potentially visible
query point set (PVQS).

Algorithm 2: kCMVQ-VRBS(T,k)

Input: T a target object, k
Output: L a set of k query points ordered by visibility

1 while true do
2 if getTargetMovement(T) < th then continue
3 Qc ← findActiveQ(T,VRMBRTree);Ba ← ∅
4 for q ∈ Qc do Ba ← Ba ∪ q.B
5 L← ComputeV isibility(T,Qc, Ba, k)

Algorithm 2 shows the steps of VR-BS approach. Lines 1 - 5 iterate as long
as the target continues querying. If T does not move a threshold distance, we

do not update existing ranking of query points in L. Line 3 computes Qc by
traversing the R*-Tree of VRMBRs and finding query points whose VRMBRs
have non-empty intersecting region with T . The ABS Ba is reconstructed in
Line 4. With the reduced set of query points Qc and the reduced set of obstacle
Ba, we compute visibility of target in Line 5.

Example 3. Figure 3(b) shows VRMBRs of query point set Q = {q1, q2, q3}. For
target position at time t1 we traverse the tree to find that T lies inside VRMBR
of all three query points. Therefore PVQS P = {q1, q2, q3}. Since P ⊂ Q, ABS
Ba = B1 ∪ B2 ∪ ... ∪ B|P |. Hence at t1 Ba = B1 ∪ B2 ∪ B3. When target moves
to a new location depicted at time t2, we again traverse R*-Tree to find that T
lies inside VRMBR of q3 only. Hence PVQS P = {q3} and ABS Ba = B1.

5 Experimental Evaluation

We evaluate performance of our proposed algorithms for answering the kCMV
query with two real datasets, for both Uniform(U) and Zipf (Z) distribution of
query point locations. Two real datasets are, the British3 dataset, representing
5985 data objects obtained from British ordnance survey4 and Boston dataset
represents 130, 043 data objects in Boston downtown5. Random paths in search
space are generated to simulate movement of a target. We assume a total of 300
queries requested by target while it is moving in the dataspace. All obstacles are
stored in a R*-Tree with the disk page size fixed at 1KB and block size fixed at
256B. The target size is kept fixed at 2 units. The algorithms are implemented
in C++, and the experiments are conducted on a core i5 2.67GHz PC with 4GB
RAM, running 64 bit Microsoft Windows 8.1.

Parameter Range Default

dataset size British (6K), Boston(130K)

number of query points nq 100, 200, 300, 400, 500 400

field of view fov 30, 45, 60, 75, 90 30

maximum distance of visibility D 300, 400, 500, 600, 700 500

Table 1: Parameters

5.1 Performance Evaluation

We conduct four sets of experiments to evaluate the performance of AVR-BS
and VR-BS, which are referred as A and V respectively, in the following figures.
In each set of experiments, one parameter is varied while all other parameters
are set to their default values. In all cases AVR-BS outperforms VR-BS in terms
of execution time and I/O cost with the expense of high pre-computation cost.
For each experiment we have evaluated the results of 10 iterations and reported
average performance.
3 http://www.citygml.org/index.php?id=1539
4 http://www.ordnancesurvey.co.uk/oswebsite/indexA.html
5 bostonredevelopmentauthority.org/BRA 3D Models/3D-download

Straightforward Approach We have compared our proposed approaches with
the straightforward approach, which finds kMVQ at each time instance. The
straightforward approach is not scalable for a moving target and is outperformed
by both AVR-BS and VR-BS algorithms. AVR-BS is about 250 times (British)
and 1500 times (Boston) faster than the straightforward approach, whereas VR-
BS is about 125 times (British) and 128 times (Boston) faster than the straight-
forward approach. AVR-BS has 48 times (British) and 28 times (Boston) less I/O
cost than the straightforward approach.VR-BS has similar I/O cost to straight-
forward approach. VR-BS first traverses a R*-Tree to find out the query points
whoseVRs intersect T and then retrieves obstacles that belong to BS of these
query points. This results in high I/O cost. But VR-BS uses reduced set of ob-
stacles and set of query points during visibility computation, which explains its
lower processing time than the straightforward approach.

British Boston

Time (ms) I/O (avg) Time (ms) I/O (avg)

Straightforward 778.78 24.92 21946.42 365.82

AVR-BS 3.31 0.54 13.93 13.91

VR-BS 6.36 47.05 170.31 354.72

Table 2: Comparison with Straightforward Approach

Preprocessing. Table 3 shows that precomputation time in milliseconds (ms)
for both AVR and BS for default values of parameters. Both costs increase with
the increase in nq, fov or D. For more query points, more polygon intersections
take place and more AVRs are generated. For AVR both datasets show that the
cost is more for Z as query points are clustered nearby and their VRs are more
likely to overlap and is similar for both datasets.

British Boston

Uniform Zipf Uniform Zipf

AVR 56135.66 85149.0 58718.67 92671.67

BS 1438.0 1734.33 12320.33 14827.67

Table 3: Preprocessing time for AVR and BS

Varying No. of Query Points. Figure 4 shows that with the increase of number
of query points, execution time and I/O cost both increase for both AVR-BS and
VR-BS. VR-BS approach has higher execution time than AVR-BS as PVQS and
ABS needs to be recomputed at each position change of the target. On average
AVR-BS is 10 times (Boston) and 2 times (Bristish) faster than VR-BS. VR-BS
incurs higher I/O cost than AVR-BS as building PVQS each time requires the
R*-Tree traversal. Execution time of VR-BS is similar to that of AVR-BS, for
British dataset. This is because British dataset has a smaller search space and
with the increase in number of query points in this smaller space, VRs overlap
more frequently and hence number of AVRs increases. Therefore, a moving target
changes AVR more often, which requires more computation in AVR-BS.

Varying Field of View. Figure 5 shows that execution time increases for both
approaches with increase in fov. More obstacles come into consideration for each

 0

 80

 160

 240

 320

100 200 300 400 500

e
x
e
c
u
t
i
o
n

t
i
m
e

nq

V(U)
A(U)

V(Z)
A(Z)

(a) Time

 0

 150

 300

 450

 600

100 200 300 400 500

I
/
O

nq

V(U)
A(U)

V(Z)
A(Z)

(b) I/O

 0

 6

 12

 18

100 200 300 400 500

e
x
e
c
u
t
i
o
n

t
i
m
e

nq

V(U)
A(U)

V(Z)
A(Z)

(c) Time

 0

 20

 40

 60

 80

100 200 300 400 500

I
/
O

nq

V(U)
A(U)

V(Z)
A(Z)

(d) I/O

Fig. 4: Effect of varying nq for Boston (a-b) and British (c-d) datasets

 0

 100

 200

 300

 400

30 45 60 75 90

e
x
e
c
u
t
i
o
n

t
i
m
e

fov

V(U)
A(U)

V(Z)
A(Z)

(a) Time

 0

 200

 400

 600

 800

30 45 60 75 90

I
/
O

fov

V(U)
A(U)

V(Z)
A(Z)

(b) I/O

 0

 10

 20

30 45 60 75 90

e
x
e
c
u
t
i
o
n

t
i
m
e

fov

V(U)
A(U)

V(Z)
A(Z)

(c) Time

 0

 30

 60

 90

30 45 60 75 90

I
/
O

fov

V(U)
A(U)

V(Z)
A(Z)

(d) I/O

Fig. 5: Effect of varying fov for Boston (a-b) and British (c-d) datasets

query point as fov increases. Effect of varying fov is similar to the effect of
varying nq. On an average AVR-BS performs approximately 10 times and 1.5
timesfaster than f or Boston and British datasets, respectively.

Varying Maximum Distance of Visibility. Figure 6 shows that execution time
increases for both approaches in both Boston and British datasets. AVR-BS
outperforms VR-BS in all cases. Execution times for both approaches are similar
in British dataset; the underlying reason can be high density of query points.

Varying Paths. Figure 7 shows the result of average execution time and I/O
cost of 10 different paths. In all cases I/O cost for VR-BS approach is higher
than that of AVR-BS as expected. On average AVR-BS performs 7 times and 2
times faster than VR-BS for Boston and British datasets, respectively.

6 Conclusion

In this paper, we have introduced a new type of query, namely k Continuous
Maximum Visibility Query that continuously finds the best viewpoint for a mov-
ing target in the presence of obstacles. To efficiently answer a kCMV query,
we have proposed two approaches. The first approach, AVR-BS, relies on pre-
computation to provide fast answer to queries. On the other hand, the second
approach, VR-BS, makes a tradeoff between pre-computation and memory usage
while processing queries. Our experimental results show that AVR-BS is two to
three orders of magnitude faster than the straightforward approach, and VR-BS
is at least one order of magnitude faster than the straightforward approach.

Acknowledgements. This research is conducted at the department of Com-
puter Science and Engineering, Bangladesh University of Engineering and Tech-
nology (BUET). This research is supported by the ICT Division - Government
of the People’s Republic of Bangladesh.

 0

 50

 100

 150

 200

300 400 500 600 700

e
x
e
c
u
t
i
o
n

t
i
m
e

D

V(U)
A(U)

V(Z)
A(Z)

(a) Time

 0

 150

 300

 450

 600

300 400 500 600 700

I
/
O

D

V(U)
A(U)

V(Z)
A(Z)

(b) I/O

 0

 10

 20

 30

300 400 500 600 700

e
x
e
c
u
t
i
o
n

t
i
m
e

D

V(U)
A(U)

V(Z)
A(Z)

(c) Time

 0

 30

 60

 90

300 400 500 600 700

I
/
O

D

V(U)
A(U)

V(Z)
A(Z)

(d) I/O

Fig. 6: Effect of varying D for Boston (a-b) and British (c-d) datasets

 0

 40

 80

 120

100 200 300 400 500

e
x
e
c
u
t
i
o
n

t
i
m
e

nq

V(U)
A(U)

V(Z)
A(Z)

(a) Time

 0

 50

 100

 150

 200

100 200 300 400 500

I
/
O

nq

V(U)
A(U)

V(Z)
A(Z)

(b) I/O

 0

 5

 10

 15

 20

100 200 300 400 500

e
x
e
c
u
t
i
o
n

t
i
m
e

nq

V(U)
A(U)

V(Z)
A(Z)

(c) Time

 0

 25

 50

 75

100 200 300 400 500

I
/
O

nq

V(U)
A(U)

V(Z)
A(Z)

(d) I/O

Fig. 7: Effect of varying paths for Boston (a-b) and British (c-d) datasets

References

1. M. E. Ali, E. Tanin, R. Zhang, and L. Kulik. A motion-aware approach for efficient
evaluation of continuous queries on 3d object databases. VLDB J., 19(5):603–632,
2010.

2. B. Aronov, L. J. Guibas, M. Teichmann, and L. Zhang. Visibility queries and
maintenance in simple polygons. DCG, 27(4):461–483, 2002.

3. T. Asano, L. J. Guibas, J. Hershberger, and H. Imai. Visibility of disjoint polygons.
In Algorithmica, pages 49–63, 1986.

4. B. Ben-Moshe, O. Hall-Holt, M. J. Katz, and J. S. B. Mitchell. Computing the
visibility graph of points within a polygon. In SCG, pages 27–35, 2004.

5. F. M. Choudhury, M. E. Ali, S. Masud, S. Nath, and I. E. Rabban. Scalable
visibility color map construction in spatial databases. Inf. Syst., 42:89–106, 2014.

6. L. S. Davis and M. L. Benedikt. Computational models of space: Isovists and
isovist fields. In Computer Graphics and Image Processing, page 4972, 1979.

7. Y. Gao and B. Zheng. Continuous obstructed nearest neighbor queries in spatial
databases. In SIGMOD, pages 577–590, 2009.

8. Y. Gao, B. Zheng, W. Lee, and G. Chen. Continuous visible nearest neighbor
queries. In EDBT, pages 144–155, 2009.

9. R. Graham, D. Knuth, and O. Patashnik. Concrete Mathematics. Addison-Wesley.
10. S. Masud, F. M. Choudhury, M. E. Ali, and S. Nutanong. Maximum visibility

queries in spatial databases keys. In ICDE, pages 637–648, 2013.
11. S. Nutanong, E. Tanin, and R. Zhang. Visible nearest neighbor queries. In DAS-

FAA, pages 876–883, 2007.
12. I. E. Rabban, K. Abdullah, M.E. Ali, and M. A. Cheema. Visibility color map for

a fixed or moving target in spatial databases. In SSTD, pages 197–215, 2015.
13. L. Shou, Z. Huang, and K.-L. Tan. Hdov-tree: The structure, the storage, the

speed. In ICDE, 2003.
14. S. Suri and J. ORourke. Worst-case optimal algorithms for constructing visibility

polygons with holes. In SCG, pages 14–23, 1986.
15. A. R. Zarei and M. Ghodsi. Efficient computation of query point visibility in

polygons with holes. In SCG, pages 6–8, 2005.

	Continuous Maximum Visibility Query for a Moving Target
	Introduction
	Related Works
	Visibility in Computational Geometry and Computer Graphics
	Visibility in Spatial Queries

	Problem Formulation
	Preliminaries
	Aggregated Visible Region and Potentially Visible Query Point Set
	Blocking Set and Aggregated Blocking Set

	Our Approach
	Preprocessing
	AVR-BS Incremental Approach
	VR-BS Approach

	Experimental Evaluation
	Performance Evaluation
	Straightforward Approach

	Conclusion

