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Abstract—This paper designs a novel in-place LSD (least
significant digit first) radix sort for data-intensive applications.
Our framework, which we call Typhoon, drops the histogram
pass on each level of the sort except the last one, incorporates a
high-performance architecture for dynamically expanding output
buckets using low-overhead memory blocks we call slices, and
includes a number of optimizations that reduce pipeline stalls
due to cache conflicts and read-after-write bottlenecks. Because
Typhoon scatters slices in each bucket randomly across RAM, it
has to employ novel mechanisms for non-linear prefetch that
combat tendencies of the CPU to pollute the cache on each
jump. At the end of the sort, Typhoon uses OS virtual-memory
primitives to unscramble the slices and put them in correct order
within the input buffer. Results show that Typhoon achieves
a significant single/multi-core improvement over the existing
methods, including recent AVX-512 efforts from Google [13] and
Intel [17], often doubling or tripling their performance.

I. INTRODUCTION

Sorting has become a ubiquitous building block behind
many big-data computational frameworks and distributed sys-
tems, including various MapReduce platforms [1], [2], [9],
large-scale databases [5], and external-memory graph analytics
[8]. After decades of research, improving sort performance
has become a difficult target, which we formalize in five
main parameters — single-threaded speed, robustness against
adversarial/non-uniform inputs, RAM usage during the sort
(i.e., in-place vs out-of-place), stability (i.e., preservation of
original order between duplicate keys), and performance in
multi-core environments.

In particular, single-threaded speed measures an algorithm’s
useful work per CPU cycle, which is a top priority in scenarios
that are not bottlenecked by the total RAM bandwidth of the
system. This may include HBM (High Bandwidth Memory)
server architectures (e.g., 900 GB/s per socket [12]), optimiz-
ing for power consumption, and/or sorting on fewer than all
available cores. Resilience against non-uniformity guarantees
predictably high performance on real-world datasets, which
are often skewed, while in-place operation either saves on
hardware cost (i.e., requires half the RAM) or allows fewer
passes in external memory compared to out-of-place methods.
Stability is an important property in key-value sorts (e.g., in
databases and MapReduce), where it is crucial to ensure that
an existing order of values is not disturbed by subsequent
sorts of the data. Finally, scaling behavior in multi-core
settings reflects the algorithm’s synchronization overhead and
combined memory traffic across multiple threads, which in
some cases can become a separate choke point.

Unfortunately, prior work exhibits a tradeoff between these
objectives, which includes sensitivity to key distribution [6],
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Algorithm 1: Textbook LSD

Func LSD(Item *input, int n)

1

2 allocate aux array of size n

3 for (L=0;L < [w/b]; L++) do

4 if (L & 1) == 0 then

5 | Split(input, n, aux, L); > even level

6 else

7 | Split(aux, n, input, L); > odd level

8

9 Func Split(Item *in, int n, Item *out, int L)

10 buck = Histogram(in, out, L); > set up pointers in out array
1 for (i=0;i < n;i++) do

12 idx = Extractldx(in[i], L); > bucket index

13 *buck(idx]++ = in[i]; > write item, increment pointer

[15], [19], out-of-place and/or unstable operation [3], [6],
[13], [15], [19], [30], [31], low speed [4], [7], [25], and non-
trivial complexity in achieving efficient multi-threading [6],
[13], [15]. Our goal in this paper is to develop a sorting
framework that not only rivals the existing methods in terms
of robustness, stability, and RAM usage, but also surpasses
them in single/multi-core performance.

Due to limited space, the presentation in this paper is brief;
however, a more detailed discussion, additional benchmarks,
and deeper analysis can be found in the longer version of the
paper [20].

II. StATIC TYPHOON (S-TYPHOON)
A. Baseline LSD

Assume n input keys, each consisting of w bits. Algorithm 1
shows a textbook out-of-place version of LSD (least significant
digit first) radix sort, which is stable by design. After creating
an auxiliary array of size n (Line 2), the method runs [w/b]
passes (levels) that alternate between partitioning the input
into the aux buffer and vice versa (Lines 3-7), where b > 1 is
the number of bits examined at each level. The Split function
begins with a histogram (Line 10) that sets up 2° destination
bucket pointers buck, where buck[0] = out and buck[i+1] -
buck[i] is the number of keys that will be written into the
i-th bucket. Following this, Line 12 isolates the b bits that
represent the bucket index of each key in[i] and Line 13 writes
the item into the corresponding memory location, updating the
destination pointer buck[idx] in the process.

On each level, Algorithm 1 reads n items from RAM during
the histogram pass and another n during splitting. On top of
that, it writes n items to the output buckets, which causes the
CPU to additionally read for ownership all destination cache
lines in the output buffer. Thus, Algorithm 1 ends up with



Algorithm 2: WCv1l

1 Func Split(Item *in, int n, Item *out, int L)
2 buck = Histogram(in, out, L);

3 for (i=0; i < n; i++) do

4 prefetch (in + i + D);

5 idx = Extractldx(in[i], L);
6
7
8

TABLE I
WCV1A SPEED

run len  M/sec
1 1,121 4.2

p = tmpBuckets + idx*B;

pltmpSize[idx]] = in[i];

if ++tmpSize[idx] == B then 1‘6* 222 22
9 OffloadAVX(buck[idx], p); 512 283 53
10 buck[idx] += B; :
11 tmpSize[idx] = 0;

12
13 Func OffloadAVX(__m256i *dest, __m256i *src)
14 for (i=0; i < R/ sizeof(__m256i); i++) do
15 X =_mm256_load_si256(src + i);

16 _mm256_stream_si256(dest + i, x);

a total of 4n keys of memory traffic per level. One can do
significantly better by utilizing software write-combine (WC)
[51, [15], [19], [25], [27], [28], [33], which initially stores data
into small tmp buckets contained in the L1/L2 cache and then
offloads them to RAM using non-temporal (streaming) stores
that bypass the cache. For efficiency reasons, tmp bucket size
B is usually assumed to be a multiple of cache-line size.
Because streaming avoids read-for-ownership, this reduces
RAM traffic to 3n per level, i.e., 25% lower than the naive
approach. Assuming 2° is larger than the TLB size, which is
commonly the case, this also decreases the number of TLB
misses from one per key in Algorithm 1 to one per B keys.

Drawing inspiration from [15], which is currently the fastest
implementation of WC, assume tmpBuckets is an array of
(2° - B) items and tmpSize[i] stores the current number of
keys in bucket i. Algorithm 2, which we call WCv1, shows the
baseline partitioning function of an optimized LSD. Its Line 4
runs a prefetch at some distance D in the input buffer, Line 8
detects tmp bucket overflow, and Line 9 uses a non-temporal
memcpy from the start of the tmp bucket (i.e., pointer p) to the
corresponding location in RAM (i.e., buck[idx]). Note that R =
B - ItemSize in Line 14 is the length of each bucket in bytes,
which is assumed to be a multiple of 256-bit AVX register
data type __m256i.

To make discussion more focused, it should be noted that
b = 8 is currently the optimal value for LSD, in both
Algorithm 1 and 2. Larger values of b (such as 10 or 11) may
be used to reduce the number of passes; however, each pass
becomes significantly slower due to the increased number of
TLB misses and page-table walks, making performance of the
whole sort noticeably worse. Therefore, most of the examples
below assume b = 8 and 256-way partitioning. In this setup,
sorting 32-bit keys (i.e., four levels) requires 16n memory
traffic in Algorithm 1 and 12n in Algorithm 2.

B. Overview of S-Typhoon

While the basic partitioning engine in Algorithm 2 is a good
starting point, we are interested in the question of achieving the
absolute maximum performance, both in terms of CPU cycles
per key and RAM traffic, in order to establish a definitive
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Fig. 1. S-Typhoon workflow overview (32-bit keys).
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upper bound on LSD speed. At a minimum, each pass of
the sort has to read through the input keys, decide on their
buckets, and send them to output, i.e., the work done in Lines
3-11 must remain. However, the histogram in Line 2 can be
omitted unless keys in adjacent output buckets must appear
contiguously in RAM, which is a requirement only for the final
level. Avoiding the histogram not only reduces the amount of
CPU cycles by ~30%, but also leads to lower RAM pressure
in multi-threaded scenarios. If this idea can be implemented
efficiently in practice, 32-bit keys would require three levels
of 2n memory traffic (i.e., non-counting) and one level of 3n
(i.e., counting), for a total of 9n per full sort, dropping the
memory load of Algorithm 2 by another 25%.

Eliminating the histogram requires expanding buckets dy-
namically without knowing their final size. We delay this
issue until the next section, but in the meantime assume that
an oracle pre-allocates two sets of static buckets, bp[0] and
bp[1], that never overflow. In this notation, bp[L&1][i] points
to bucket i during level L. Then, Static Typhoon (S-Typhoon)
proceeds in five steps shown in Fig. 1, where partitioning levels
Ly — Lo are non-counting, level L3 is the histogram on the
most-significant digit, and the final distribution pass £4 returns
all items back into the input buffer. Note that buckets during
Lo — Lo are kept in disjoint memory locations, while those in
L, are tightly packed (i.e., appear with no gaps).

C. Read-After-Write Bottlenecks

Our first topic is to analyze WCv1 under skewed key
distributions. While the method works well for uniform keys,
our results show that it inexplicably reduces speed when
multiple adjacent keys are sent into the same bucket, which is
a common occurrence for non-uniform inputs. Define WCv1a
to be Algorithm 2 without the histogram pass in Line 2. Then,
Table I demonstrates this issue with 1 GB of 32-bit keys and
an Intel Skylake-X 17-7820X clocked at a fixed 4.7 GHz,
where the run length in the first column specifies how many
back-to-back copies of each random key are generated. The
speed begins at 1,121M keys/sec (4.2 cycles/key) in the first
row (all unique), drops to 826M/sec in third row (5.7c/key),
and finally settles on 883M/sec (5.3c/key) for sufficiently long
runs. The worst case is 1.4x slower than the best, which is
not a negligible drop.

A key component of data partitioning, whether it uses write-
combine or not, is to perform updates to shared counters
as items arrive from input. These can be bucket pointers
in Algorithm 1 (Line 13) or tmp bucket sizes in Algorithm
2 (Line 8). To better understand the challenges the CPU
faces in these cases, first consider a simplified problem, also



TABLE I

Algorithm 3: Histogram Hv1

Hv1 SPEED
1 Func Hist(Item *in, int n)
) for (i=0; i < n; i ++) do run len  M/sec  c/key
3 prefetch (in + i + D); jl fgfg %é
4 idx = *(uint8*)(in + i); ’ ’
s hist{idX]++; 16 1454 32
’ 512 927 5.1

of relevance to S-Typhoon, whose purpose is to compute a
histogram using the first byte of each item in an array. A
baseline solution [19], [25], which we call Hv1, is illustrated
by Algorithm 3. Its performance using the same setup as
before is shown in Table II. In this case, the reduction in speed
is even sharper, i.e., 2.4 x between all-unique and all-duplicate.
To delve deeper, consider the CPU pipeline for Hv1, which
repeats a pattern of two loads, an increment, and a store:

idx0 = *(uint8*)in; c0 = hist[idx0]; inc c0; hist[idx0] = c0;
idx1 = *(uint8*)(in+1); ¢1 = hist[idx1]; inc c1; hist[idx1] = c1;

where idx0-idx1, c0-c1 are registers. For performance rea-
sons, the CPU’s out-of-order execution engine attempts to
hoist loads ahead of preceding stores unless its memory-
disambiguation module detects a conflict. As the pipeline
decodes the uops, it sees a store to hist[idx0Q], followed by
a load from hist[idx1], both from yet-unknown buckets idx0,
idx1. Without additional hints, the CPU cannot decide whether
this presents a conflict and optimistically assumes that these
uops are independent, which causes it to reorder the load from
hist[idx1] to precede the store into hist[idx0].

When adjacent keys refer to different buckets, load hoisting
allows higher levels of instruction-level parallelism as counters
from multiple locations can be fetched and incremented con-
currently. However, doing the same for pairs of keys with idx0
= idx1 leads to consistency violations, which are detected by
the CPU just before these instruction retire, causing expensive
pipeline flushes. It is speculated [11] that Intel maintains
a history of mispredictions for each load and temporarily
disables hoisting after a threshold of violations is reached.

While hoisting is inoperable and duplicate keys are still
arriving, the histogram runs into dependency chains between
each load from the L1 cache and the preceding store. Going
into a latency-bound regime (i.e., 4c/load for Skylake-X) is
already a major bottleneck, but an additional problem arises
from having to search through the store buffer and forward
loads out of it [16], which sometimes has an even higher
latency [34]. Breaking loop-carried dependencies and reducing
frequency of pipeline stalls is our next topic.

D. Reducing Store-Forwarding Costs

This analysis gives rise to the following idea. Dependency
between k adjacent store-load pairs can be resolved by reading
k histogram counters upfront, performing comparison across
all k(k — 1)/2 pairs of bucket indexes, and incrementing
the relevant counters using the result of the comparison.
For £k = 2, this is demonstrated by Algorithm 4, which
simultaneously reads two indexes from input and obtains their

Algorithm 4: Histogram Hv2

Func Hist(Item *in, int n)

! TABLE III

2 for (x =in; x < in + n; X += 2) do

3 prefetch (x + D); HV2 SPEED

4 !de = *(u!nt8*)x; run len  M/sec  c/key
5 idx1 = *(uint8”)(x + 1); T 2496 )
6 0 = hist[idx0]; c1 = hist[idx1]; 4 2478 1.9
7 c0++; hist[idx0] = c0; 16 2275 21
8 ¢l = (idx0 == idx1) ? c0 : c1; 512 1402 34
9 c1++; hist[idx1] = c1; -

counters at the start of each iteration (Lines 4-6), keeping them
in registers. It then updates counter cO (Line 7) and decides
the value of c1 based on whether the two buckets are the same
(Line 8). To keep the algorithm branchless, ternary operator
? is implemented using a conditional move CPU instruction
cmov, which needs only 0.5c/iteration (i.e., 0.25c/key). If the
compiler does not issue CMoV, assembly can be used instead.

Table III displays the performance of Hv2. For unique keys
in the first row, the speed goes up 11% compared to Hv1.
As the run length increases, performance gains become more
substantial, where Hv2 finishes with a 1.5x advantage in the
last row compared to Table II. The gradual reduction in speed
as the burst length increases in Table III can be explained by
Hv2’s success at eliminating store-load dependencies within
each pair of items, but not between pairs. Unfortunately, for
k > 3, the quadratic cost of doing all-to-all scalar comparisons
becomes prohibitively high, i.e., no further improvement is
currently possible under the same umbrella.

We therefore leverage conflict detection in Algorithm 4 by
applying the same principles to key distribution. This is shown
in Algorithm 5 under the name of WCv2. Unlike the previous
version WCv1a, bucket addresses in RAM are passed into the
function in the third argument (i.e., array of pointers buck),
which refers to either bp[0] or bp[1] depending on the level.
Additionally, the fourth argument specifies an array of pointers
t to the starting position in each tmp bucket. The algorithm
further assumes that the number of bytes in each tmp bucket R
=B - ItemSize is a power of two and the start of tmpBuckets
is aligned to R bytes.

For each pair of items, macro MOVE reads their indexes
from the corresponding byte of the key (Lines 7-8) and obtains
both pointers p0, p1 (Line 9) without yet knowing if there
exists a conflict. It then calls a macro WRITE, which stores
the first key into p0 and checks for the end of the tmp bucket
(Line 16). If so, it jumps pO to the start of that bucket and
offloads its B items to RAM. At the end, it updates t[idx0]
in Line 20 to reflect the new position. At this point, p1 can
be computed using a conditional move in Line 11 and the
process repeats for the second key. Note that WCv2 avoids
store forwarding within each pair of keys because t[idx1] is
read (Line 9) before t[idx0] is written (Line 20).

Table IV shows the resulting speed. Compared to WCv1a
in Table I, this version gains a few M/sec in the first row,
improves by 20% in the second, 35% in the third, and 47%
in the last one.



TABLE V

Algorithm 5: WCv2 Algorithm 6: Histogram Hv3 HvV3 SPEED

1 Func Split(lte.m *in, {'nt n, Item **buck, Item **t, int L) 1 Func Hist(Item *in, int n)

2 for (x = in; X < in + n; X += 2) do 2 for (x = in; X < in+n; x += 4) do runlen Misec  clkey
3 prefetch (x + D); 3 prefetch (x + D); offset = 0

4 MOVE(x); TABLE IV 4 idx0 = *(uint8*)x; ‘11 §2§§ ig
- Macro MOVEGY) WCV2 SPEED ; idhcl = (uint&H0c1); 16 2215 21
D] i = *((uint8xel): ¢ idx2 = (uint8 )(x+2); 512 1904 25
s | idxd = *((uint8*)(x+1)+L); runlen  Mfsec  clkey 7 O o) x+8); offei=8
s | p0 = tfidx0]; p1 = tlid]; NE N istOlickOl -+ T 2941 16
0 | WRITE(X[0], p0, idx0); 4 L1842 9 st 4 204 16
i | pt = (idx0 == idx1) ? p0 : p1; 16 L1842 10 h!StS[!dX3]++: 16 2941 16
b | WRITEX[], p1, idx1): 512 1302 36| Z e i 512 2941 16

13
14 Macro WRITE(key, p, idx)

15 *p++ =key; > store item

16 if (p & (R-1) == 0) then > overflow?

17 p—=B; ©roll back to start of bucket
18 OffloadAVX(buck[idx], p);

19 buck[idx] += B;

20 tidx] = p;

E. Histograms Revisited

We now deal with the issue of designing the histogram for
level L3, keeping in mind that we no longer need this solution
to be applicable to a key splitter. Our next approach, illustrated
as Hv3 in Algorithm 6, unrolls the loop to grab multiple keys
at once and writes updated counters into separate histograms.
While this example shows unrolling to »r = 4 keys and
h = 4 histograms, other combinations are possible as well.
Furthermore, when r exhausts general-purpose registers, our
implementation of Hv3 uses SIMD (SSE/AVX) to hold the
keys. A crucial element of this technique is the use of an
offset, which specifies the distance (in bytes) between the start
of each histogram and the end of the previous one. Since each
histogram is exactly 256x8 = 2 KB, offsets are needed to
avoid 4K aliasing and conflicts in set-associative caches [16].

Using = 16 keys and h = 8 histograms, the upper half
of Table V shows that a zero offset can produce a 16-35%
improvement over Hv2, but the resulting method still chokes
on duplicate keys, losing over a billion keys/sec between the
first and last rows. On the other hand, offsetting the histograms
by 8 bytes yields a drastically different result, i.e., a constant
1.6¢c/key, as also shown in the table.

FE. Multi-Threading

Assume a joint sort across 7' threads, each holding its own
dual set of RAM buckets bp[0], bp[1] and local tmp buckets in
the corresponding L1/L2 cache. Suppose matrix M consists of
all sub-buckets written by the threads after a particular level of
splitting, i.e., M;; represents the contents of bucket 7 created
by thread j. To identify a sub-bucket, it is sufficient to specify
its 2D index (7). Furthermore, let triple (éjr) refer to the r-th
key in bucket M;;. Then, a row-major order on keys is defined
as (zyr) < (uovt) iff (z <u)V(r=u,y<v)V(xr=uy=
v, < t). Note that for level Ly, we assume M = (Myp) is a
1 x 1 matrix consisting of the input array.

Multi-threading requires assigning each thread p =
1,2,...,T a set of keys A, consisting of n/T triples (ijr)

such that {Aq,..., A} forms a partition on M. Two rules
must be satisfied in order to ensure correctness: a) each
thread processes keys assigned to it in row-major order;
and b) if (xyr) € A, and (uvt) € A, where p < g,
then (zyr) < (wvt) must hold. This guarantees stability,
i.e., that the next level of LSD does not break the relative
order established within each bucket on the previous level.
To achieve b), our load-balancing algorithm views all n keys
as a one-dimensional array in the row-major order of M and
assigns its p-th consecutive batch of size n/T to thread p.

The cost of computing these boundaries depends on the
number of buckets 2° and thread count T', but this is usually
negligible (i.e., under 10 us) compared to the sort time.
Since threads require data in sub-buckets M;; created by
other threads, each level £y — L4 ends with a barrier that
synchronizes the threads.

III. TYPHOON

To make the framework developed in the previous section
practical, the first challenge is to design a low-overhead
technique for dynamically expanding output buckets as they
are written to. While this problem has been touched upon in
prior work [4], [15], [25], [30], performance of these solutions
leaves much to be desired. Our objective here is to create a
new bucket-management infrastructure that runs £y — £4 at
almost the same speed as S-Typhoon, but without using an
oracle to statically pre-allocate the buckets. After £4, the data
will end up in a number of disjoint locations in RAM, where
the second challenge is to restore proper order between the
keys using a novel unscrambling level we call Ls.

Define a slice to be contiguous region of S bytes in virtual
memory starting from an address that is aligned to S. Slices
come from two places — the input buffer and some auxiliary
space that is needed to provide support to partially filled slices
during the split. To speed up detection of end-of-slice, we
assume S is a power of 2, and to prevent offloads from crossing
slice boundaries, let S be a multiple of tmp bucket size R. For
reshuffling at L5, S must also be a multiple of page size.

A. Data Structures

We start by considering single-threaded execution. Suppose
the sort maintains a stack of free slices, which is an array of
64-bit pointers to the start of each slice. Compared to other
data structures, stacks have an advantage in their low push/pop



Algorithm 7: WCv4 (simplified)
Func Split(Item **s, int ns, Item **bp, Item **t, int L)

1

2 for (j=0; ) < ns; j++) do > iterate over all slices

3 cur = s[j]; next = s[j+1]; dist = next - cur;

4 do

5 prefetch (cur + dist); > prefetch next slice
6 MOVE(cur);

7 cur +=2;

8 while cur & (sliceSize - 1);

cost, i.e., one stackTail pointer, a load/store instruction, and
a register increment/decrement. Additionally, stacks achieve
high temporal locality because of immediate reuse of slices
between input and output. As we see below, this allows
Typhoon to run certain levels of the sort faster than S-Typhoon.
At the start of the sort, the free stack is initialized to A
auxiliary slices, where A determines the O(1) constant in
n + O(1) memory usage. Each level of the sort requires at
least 2° slices in the free stack. Thus, A > 2° must hold. We
refine this bound later in the section.

To keep track of the slices assigned to each bucket, suppose
slice database sd contains in sd.pl[i][j] the address of the j-
th slice in bucket <. For each new slice popped from the free
stack, the splitter records tuple (bucket idx, slice pointer) into a
separate pre-allocated buffer. After the level is over, this array
is processed to count the number of slices that went into each
bucket i, which allows easy construction of sd. Since Typhoon
alternates between two sets of buckets, each set requires a
separate slice database, which we call sd[0] and sd[1]. If the
sort reads slices from sd[Kk], where K is either O or 1, it keeps
track of the new ones in sd[1-K].

B. Aligned Splitter (Lo — L2)

We extend the S-Typhoon WCv2 splitter, which we now call
WCv3, to accept an array of slice pointers S[] rather than one
large buffer. The main loop in Algorithm 5 remains essentially
the same, except it gets interrupted every .S bytes to load the
next input slice pointer. This involves four CPU instructions
per slice and a mispredicted branch.

On output, the OffloadAVX function has to check if the
destination pointer buck[idx] is aligned to slice boundary
using bitwise masking. If so, a free slice is popped from the
stack and added to the array sd[K].p[idx]. To ensure proper
operation at the start, all buckets begin such that buck[idx]
= NULL, which causes a trip to the stack on first access to
each destination pointer. In total, output slice management
requires one mask instruction and a well-predicted branch per
offload, which adds at most 1/4 cycle per R bytes, as well
as 6 additional mov/add/sub instructions per slice, which add
~1.5 cycles per S bytes. Because of the simplicity of its data
structures, WCv3 can fit all pointers and variables into 13
general-purpose registers, leaving three unused. This ensures
no register pressure, spills to the stack, or reloads.

Considering the low cost of managing the slice database
and the stack, it is perhaps unexpected that WCv3 runs a
lot slower than WCv2 during £,. With 4-KB slices and 32-
bit keys, Intel i7-7820X shows a reduction in speed from

TABLE VI
LEVEL £1 SPLITTER SPEED (M/SEC)
WCv2 WCv3 WCv4
(static) | 4 KB 8 KB | 4KB 8KB
1,128 872 939 | 1,117 1,139

1,128M/sec to 872M/sec, a loss of 23%! Further investigation
reveals that this issue is caused by two compounding effects
— software prefetch at distance D in Line 3 of Algorithm 5,
which pollutes the cache with irrelevant data ahead of each
jump, and CPU hardware prefetchers that detect scans and
also load some amount of garbage following each slice.

There is not much we can do about the latter issue, but the
former can be alleviated by introducing a non-linear prefetch
into WCv3, which keeps both the current slice pointer cur =
s[j] and the next one s[j+1] in registers, prefetching at address
(x + D) when x + D < cur + S and (next + x - cur + D - §)
otherwise. In cases when the CPU allows a range of prefetch
options sufficiently-far in the future to work at optimal speed,
which is the case for Intel and AMD, the loop can be further
simplified to always prefetch from the next slice. For these
situations, Algorithm 7 shows a high-level operation of the
new approach WCv4.

Generally, it is expected that larger slices are faster because
the CPU prefetches less garbage compared to the amount of
useful data in the slice. Additionally, the cost of managing the
free stack and database sd becomes smaller as well. Results
in Table VI confirm this observation using 4 and 8 KB slices.
Even with 8-KB slices, WCv3 struggles to match the static
speed. On the other hand, WCv4 essentially ties S-Typhoon
with 4KB slices and exceeds its performance using 8KB slices.
As mentioned earlier, stack-based reuse of slices sometimes
gives Typhoon an advantage over S-Typhoon.

C. Histogram (L3)

As level L3 runs almost 3x faster than the splitter, the
effect of incorrect prefetch becomes even worse. In particular,
the speed of Hv3 drops by 47%, i.e., from 2,941M/sec in
Table V to 1,560M/sec (4-KB slices). Applying the trick from
Algorithm 7 improves the result to 2,744M/sec, but this is still
200M/sec slower than static.

In contrast to the splitter, which must process the items
in row-major order within matrix M, the histogram is not
constrained in how it visits the keys. Hence, it is sufficient to
identify all contiguous runs of keys in virtual memory and call
Hv3 on each of them. To determine these regions, one option
is to sort all slice pointers in the sd database and merge the
ones next to each other. However, sorting 256K slices per GB
of data is too expensive, which makes the result slower than
random jumping using the prefetch of WCv4.

On the other hand, the same outcome can be obtained by
extracting the chunks of unused space from the free stack
and partial slices in sd, sorting them, and computing the
contiguous runs of valid keys by complementing the empty
space. Note that partial slices combined with the empty stack



amounts to at most A separate regions of free memory. Thus,
the sort involves a few hundred integers, regardless of n. We
call this method Hv4 and note that it easily hits the speed of
S-Typhoon even with 4-KB slices.

D. Unaligned Splitter (L)

For L4, a new challenge arises due to the possibility that
function OffloadAVX may cross slice boundaries. The general
structure for this level follows WCv4, except OffloadAVX
needs to detect when the destination pointer moves to the
next slice. In particular, it examines if the current slice can
accommodate another R bytes; if so, it runs the standard
(uninterrupted) offload loop. Otherwise, it moves enough keys
to finish the current slice, obtains a new one from the stack,
and completes the offload there, in both cases using AVX. The
frequency of taking the slice-crossing branch is determined by
the ratio of tmp bucket size to slice length, i.e., R/S. With
S = 4 KB, the probability to take the slower branch on Intel
CPUs is 6.25% (i.e., R = 256). Combined with the extra cost
of branch misprediction, this explains why Typhoon’s £4 runs
slightly slower than its £ — Ls.

E. Multi-Threading

We now deal with slice management across 7' threads.
Assume each of them maintains a local state consisting of
a free stack, a tmp bucket buffer, two sets of bucket pointers
bp[0], bp[1], and two slice databases sd[0], sd[1]. The goal of
this setup is to make threads run with as little interaction with
each other as possible. To handle partitioning of matrix M, we
extend the row-major order introduced earlier to organize keys
by (bucket, thread, slice). For speed reasons, threads never
share slices from each sub-bucket, but the rest of the load-
balancing algorithm (Section II-F) remains the same.

For Lo — Lo, if a thread begins a level with Ay = 2° free
slices in its local stack, it has sufficient extra memory to leave
one almost-empty slice at the end of each bucket. Thus, WCv4
can run independently and without modification within each
thread using its local stack. However, because a thread reads
other thread’s sub-buckets, its stack size at the end of a level
can be anywhere from zero to the total number of partial slices
in the sub-buckets it visited. Thus, each level introduces a
size-imbalance into thread stacks, which, if left uncorrected,
eventually leads to a crash.

To address this problem, Typhoon introduces a global stack
that contains the remaining slices not currently assigned to
any thread. After finishing a level, but before the barrier, each
thread returns excess slices (i.e., those above Ag) to the global
stack. Similarly, when a level begins (i.e., after the barrier),
each thread acquires the missing slices to bring its local stack
size back to Ag.

This works well for £y — Lo, but additional difficulties arise
during £4. Because keys must be contiguous in space at the
end of the sort, there can be up to T - 2% glices that are shared
across bucket boundaries, including between different threads.
The main challenge here is to prevent allocation of redundant
slices when WCv4 moves into the last (partial) slice of each

bucket. To address this, the last thread of Typhoon that reaches
the barrier at the end of L3 pre-allocates all shared slices and
then kicks off £4. This entails examining 7" - 2° boundaries
between sub-buckets, assigning each a slice from the global
free stack, and notifying the threads that these slices have been
pre-allocated.

The notification is done through the sd database — any time
WCv4 aims to obtain a new slice, it loads the pointer x for
the current slice 5 of bucket ¢ for its thread p; if this value is
NULL, it gets a new slice from its local stack; otherwise, it
uses X as a pointer to the pre-allocated slice. Not only that, but
X specifies the exact location within the slice where sub-bucket
(ip) begins. Combining this logic with generalized offloads
that can move across slices (Section III-D) leads to our final
WCv4L4 splitter in Typhoon.

The worst-case memory usage happens at L£4. Observe
that threads may hold 7T - Ay slices in matrix M before the
level begins, they are given T - 2% additional shared slices
in pre-allocated memory, and they request 7" - 2° new slices
immediately after starting the level. As a result, the smallest
number of auxiliary slices A that the sort needs is 7' - 2 - 3.
With 4-KB slices, this leads to 3 MB per thread. Compared
to 1 GB/thread worst-case in Vortex [15], this is a major
improvement.

It should also be noted that the modified histogram Hv4
applies only to the single-threaded case since complementing
the empty space does not reveal which thread is responsible
for which slice. Additionally, T' > 2 leads to tight interleaving
of slices, where the length of contiguous regions assigned to
each thread, even if they could be determined efficiently, is
often no more than 2 slices, which negates the sought-after
benefits. Therefore, we run histogram Hv4 only for 7' = 1
thread and Hv3 otherwise.

E Reshuffle (Ls)

After L4, the data is located in [n - ItemSize/S] slices,
which are randomly scattered in RAM. Assume {vy,vo,...}
is a list of pointers in row-major order within matrix M
recorded in the slice database during L4, ignoring duplicate
slices shared across adjacent buckets. Now the remaining task
is to make each slice v; appear at offset ¢S in the input buffer.
To accomplish this, the Typhoon constructor obtains a chunk
of memory buf, big enough to hold both n input items and
A auxiliary slices, using OS primitives that allow physical
pages to be mapped/unmapped within this virtual space. For
Windows, this translates into a call to VirtualAlloc with the
MEM_PHYSICAL flag. Typhoon then grabs enough physical
pages using AllocateUserPhysicalPages and maps them to
this buffer via MapUserPhysicalPages. The buf array is then
given to the user to fill in the keys.

Note that the OS provides the PFN (physical frame number)
of each allocated page, which Typhoon stores internally in the
pfn array for later use during remapping. Level L5 begins
with unmapping all slices in buf using 7" parallel threads. The
information within these pages does not get destroyed, but
becomes temporarily inaccessible. After finishing the unmap,



TABLE VII
TYPHOON SPEED (M/SEC) ON 1 GB INPUT (UNIFORM KEYS)

Single core All cores
32-bit keys 64-bit key-value pairs 32-bit keys 64-bit key-value pairs
Level | Static | 4KB 8KB 16KB | Static | 4KB 8KB 16KB Static 4KB 8KB 16KB Static 4KB 8KB 16KB
0 1,128 | 1,162 1,182 1,183 815 831 854 865 | 8,308 | 8,902 8944 8846 | 4,381 | 4,504 4505 4,513
1 1,110 | 1,126 1,158 1,161 812 790 820 846 | 8,289 | 8,355 8,554 8575 | 4,386 | 4309 4413 4,456
2 1,131 | 1,134 1,167 1,174 828 794 833 853 | 8,298 | 8,379 8554 8541 | 4,391 | 4,327 4411 4,460
3 2,941 | 2955 2933 2934 | 2,174 | 2,037 2,035 2,036 | 20,831 | 17,197 17,927 18,286 | 10,354 | 9,291 9,896 10,217
4 1,124 | 1,121 1,148 1,161 814 788 821 846 | 8,132 | 8,129 8,345 8407 | 4352 | 4219 4305 4,344
0-4 256 259 265 266 187 182 189 193 1,878 1,878 1919 1,922 990 971 991 1,002
5 9,323 11,441 14,451 4,682 5,798 7,370 59,005 68,237 75,655 28,718 33,789 38,347
0-5 252 259 261 175 183 188 1,820 1,866 1,874 939 963 976
TABLE VIII
STRONG SCALING OF TYPHOON SPEED (M/SEC) ON 1 GB OF 32-BIT KEYS (16-KB SLICES, UNIFORM KEYS)
Level 1 core 2 cores 3 cores 4 cores 5 cores 6 cores 7 cores 8 cores

0 1,183 2,340  2.0x 3,533 3.0x 4,680 4.0x 5,824  49x 6,978 5.9x 8,041 6.8 8,846 7.5x%

1 1,161 2,312 2.0x 3462  3.0x 4,605 4.0x 5,714 49x 6,813 59x 7,788 6.7x 8,575 74x

2 1,174 2,340  2.0x 3,490 3.0x 4,628 3.9x 5,752 49x 6,835 5.8x% 7,822 6.7% 8,541 7.3x

3 2,931 5,256  1.8x 7,747  2.6x | 10,163 3.5x | 12479 43x | 14,651 50x | 16,643 57x | 18286 6.2x%

4 1,161 2,327  2.0x 3456  3.0x 4,609 4.0 5,733  49x 6,827 59x 7,750  6.7x 8,407 7.2x

0-4 266 524 2.0x 783  29x% 1,039 3.9x 1,290 4.9x 1,536  5.8x 1,755 6.6x 1,922 7.2x

5 14,451 | 28,731 2.0x | 39,097 2.7x | 49,160 3.4x | 58,511 4.0x | 65985 4.6x | 67,140 4.6x | 75,655 52x

0-5 261 515 2.0x 768 2.9x 1,018 39x 1,262 4.8x 1,501  5.7x 1,711 6.6x 1,874  7.2x

threads jointly construct the nextPfn array that specifies the
page frames that need to appear in each position in buf.

In more detail, assuming P is page size in bytes, ob-
serve that (V[i] - buf)/P is the offset in the pfn array that
contains the S/P page frames from slice v;. Similarly, the
offset in the nextPfn buffer where v; should be mapped to
is given by i*S/P. Therefore, construction of nextPfn is a
sequence of operations memcpy(nextPfn + i*S/P, pfn + (v[i]-
buf)/P, S/P*sizeof(void*)) for all i. After the threads are done
with unmapping and memcpy, they synchronize on a barrier
and call MapUserPhysicalPages with their assigned portion
of nextPfn. Another barrier follows, after which Typhoon
finishes the sort by swapping pfn and nextPfn pointers in
preparation for the next iteration (if needed). The sort can be
called repeatedly any number of times, reusing buf and other
data structures, without causing allocating of new memory.

IV. EVALUATION

Our primary benchmark platform is an Intel i7-7820X,
which is an 8-core Skylake-X CPU with a 32-KB L1, 256-
KB L2, and 16-MB L3, clocked for these experiments at a
fixed 4.7 GHz on each core. We run 32 GB of DDR4-3200
RAM in a quad-channel memory configuration, which yields a
peak non-temporal AVX memcpy bandwidth of 37 GB/s and a
maximum AVX read speed of 86 GB/s across 8 cores. Single-
threaded Typhoon is bottlenecked by the splitter’s 4.2c/key in
Table IV, while the performance of the multi-core version is
upper bounded by four memcpy passes and one read pass, i.e.,
2088M keys/sec for 32-bit items and half of that for 64-bit.

Typhoon, whose source code is available from [32], is
compiled in Visual Studio 2019, while prior methods are
reported using the best achievable speed among Clang 19, Intel
oneAPI C++ 2025 (ICX), and VS 2019. Benchmarks run on

Windows Server 2016 and Ubuntu 24.04.

A. Static vs Sliced Typhoon

Our first topic is to examine Typhoon in comparison to its
static version and assess performance loss due to slicing and
remapping. Table VII shows this result using 4-16 KB slices
and breaks down the speed for individual levels Lo, ..., Ls.
For 32-bit keys in the first four columns, the single-threaded
Typhoon shows a 1-5% advantage over the static version due
to slice reuse and ties S-Typhoon at L3. Even 4-KB slices
allow Typhoon to finish the sort on levels 0-4 faster than S-
Typhoon (i.e., 259 vs 256M/sec). Adding remapping at L,
which is 8-13x faster than the splitter, yields a final Typhoon
speed between 252 and 261M/sec, depending on slice size.
This is quite competitive against S-Typhoon; in fact, slices 8
KB or larger lead to no loss of performance.

For 64-bit items (i.e., 32-bit keys with 32-bit values), the
number of records per slice is reduced by half, which means
that all slice-related activities occur twice as frequently on a
per-key basis. Thus, it is not surprising that in these cases
Typhoon needs double the slice size to achieve the same
relative performance (e.g., 16 KB to match S-Typhoon on 64-
bit items vs 8 KB on 32-bit, shown in bold in Table VII). For
multi-threaded cases on the right side of the table, Typhoon
again generally runs faster than S-Typhoon when splitting on
Lo — L2; however, it now loses up to 18% on the histogram
pass (i.e., level L3). This is because the optimized version Hv4
does not work with T" > 2 threads and the sort has to use the
slower Hv3. Adding the cost of L5, where the OS struggles
to maintain linear scaling of remapping speed, results in 1-
5% loss on the full sort. Nevertheless, Typhoon-16KB hits
1874/2088 = 89% of memcpy bandwidth using 32-bit items
and 976/1044 = 93% using 64-bit.



TABLE IX TABLE X
SINGLE-CORE SPEED (M/SEC) ON 32-BIT KEYS ALL-CORE SPEED (M/SEC) ON 32-BIT KEYS

Sort D1 Do Ds Dy Ds g Sort Dy Do Ds Dy Ds g
Gorset [14] 37 52 51 38 42 44 Regions [22] 689 667 689 700 675 761
Polychroniou [25] 34 34 32 32 30 - Voracious [24] 581 906 566 597 587 688
Ska [29] 40 96 81 51 84 84 IPS2Ra [4] 526 967 1049 650 777 816
Regions [22] 77 58 93 79 96 85 Dovetail [10] 312 350 257 339 326 267
Voracious [24] 79 80 86 81 84 86 IPS%o [4] 327 432 450 327 417 458
Vortex [15] 150 122 128 135 147 127 Origami-512 [3] 919 927 930 939 946 931
IPS?Ra [4] 46 107 121 58 101 1 127 Typhoon-16KB | 1,879 1,879 1,020 1,891 1,915 | 1912
Doyetall [10] 103 99 94 103 102 99 2.0% 1.9% 1.8% 2.0% 2.0x% 2 1%
Reinald [26] 96 100 103 101 100 111
Fast-Radix [31] 69 68 71 70 70 72
DFR [30] 76 69 97 67 79 129
pdgsort [23] 34 35 80 34 33 56 significant digit) radix sort, LSD (least significant digit) radix
Blacher-256 [6] 133 109 117 133 133 131 . . .
PS40 [4] 36 50 51 36 50 55 sort, quick/sample sort, and merge sort — each in chronological
Highway-512 [13] 115 128 176 115 115 140 order of publication. When a method relies on SIMD, we
Intel-512 [17] 149 | 158 48 | 154 153 78 specify after its name the vector width (i.e., 128, 256, or 512)
Origami 512 [3] =L L L L L L used in the benchmark. We highlight the fastest prior approach
Typhoon-16KB 257 259 261 260 259 261 . . -

7% 16x% 15% 17% 17% | 1.9x in each column with a gray background, run Typhoon with 16-

Table VIII examines strong scaling of 32-bit speed as the
number of threads increases, including a multiplicative factor
improvement compared to the single-threaded version. We fix
the input size at 1 GB and set the affinity mask to one thread
per core, which yields the best result. From the table, observe
that splitter speed (levels £y — L2, £4) scales almost perfectly
until 6 cores, but then slows down to 6.7x at 7 cores and
7.3x at 8 cores as it starts approaching RAM bandwidth. At
the peak, the splitter reaches 8.8B keys/sec, or 35.3 GB/s.
On the other hand, the histogram at L3 shows a noticeably
worse scaling behavior, which arises from the fact that the
single-threaded version Hv4 has an 11% advantage over the
multi-threaded Hv3. It is also interesting to observe that the
OS fails to linearly scale its remapping speed on L, finishing
with a 5.2 speed-up on 8 cores. Considering all these factors,
Typhoon’s final speed in the bottom row is quite reasonable.

B. Baseline Sorts

For the next group of tests, we use five synthetic 8-GB
datasets: uniformly random integers (D1 ); a sorted sequence of
uniform numbers, where every 7-th key is set to UINT_MAX
(D3); uniformly random keys, each repeated U times, where
U is drawn from the Zipf distribution with @ = 1,56 = 7,
then shuffled randomly (Ds3); integer keys drawn from a
normal distribution with mean UINT32_MAX/2 and standard
deviation equal to 1/3 of the mean (D,); and uniformly random
floats between 0 and FLT_MAX (Ds). We also use one real-
world dataset, which is an inter-domain out-graph G from
the IRLbot web crawl [18], consisting of 89M nodes and
1.8B edges. We leverage G for two standard applications —
computation of in-degree, which entails sorting 7.2 GB of out-
neighbor adjacency lists, and graph inversion, which requires
either a stable key-value sort on 14.4 GB of (dest, src) pairs,
where each node ID is 32-bit, or an unstable 64-bit key sort.

Table IX shows the speed on 32-bit keys, where we partition
prior work into four groups (top to bottom) — MSD (most

KB slices (i.e., 12 MB of aux memory per thread), and show
the speed-up factor against the best alternative in the bottom
row. Dashes indicate inability to finish the sort (e.g., crashing,
failing sortedness checks, unsupported input size).

There are three types of methods that stand out — the Vortex
MSD [15], an SIMD quick sort from Blacher [6], with more
general implementations at Google [13] and Intel [17], and the
Origami SIMD merge sort [3]. All three perform quite well,
delivering over 130M/sec on at least one dataset, but there
is no clear winner between them. Origami posts remarkably
stable speed in all columns, but it is neither the fastest nor in-
place. Vortex wins on uniform data, but drops 19% between D1
and Ds. Blacher/Highway have similar levels of fluctuation,
while Intel takes a 68% dive on D3 and 48% on G. In contrast,
Typhoon wins in all six columns, runs in-place, and posts a 50-
90% improvement over the best prior methods. Furthermore,
its speed on non-uniform data is never slower than on Dy,
while the deviation between the max and the min is only
1.9%. This was expected from its robustness against key non-
uniformity.

Among the 17 prior methods in Table IX, only six support
multi-threading. Their all-core speed is displayed in Table X.
Across related work, Origami wins in the uniform case by a
large margin and delivers the best result in three additional
columns; however, it needs double the RAM of Typhoon and
uses power-hungry AVX-512 intrinsics to achieve this level of
performance. In contrast, Typhoon in Table X operates mostly
using scalar instructions and still almost doubles the speed of
the best prior work in all six cases.

For the next experiment, we use 64-bit items composed of
32-bit key-value pairs. Some of the prior work does not have
a separate provision for this case, requiring that such items
be treated as monolithic 64-bit keys. Reasons include faster
performance (e.g., in comparison-based SIMD methods) and
ability to use unstable sorts to achieve common database tasks
that would otherwise need stability (e.g., graph inversion). In
this comparison, we omit Blacher [6] since it only works with
32-bit keys and add another MSD method Raduls2 [19], which



TABLE XI
SINGLE-CORE SPEED (M/SEC) ON 64-BIT KEY-VALUE PAIRS

TABLE XII
ALL-CORE SPEED (M/SEC) ON 64-BIT KEY-VALUE PAIRS

was absent previously as it requires key length to be a multiple
of 8 bytes.

Table XI shows the single-threaded outcome. First notice
that, compared to 32-bit cases in Table IX, the three AVX-
512 methods take a huge performance hit, sinking from 115-
149M/sec to 55-76M/sec. Second, even though Vortex delivers
excellent results for the uniform case Dy (i.e., 120M/sec), it
degrades to ~65M/sec on D3 and Djs. Graph inversion on
G also gets derailed, achieving only 57M/sec, i.e., a 2.1x
reduction compared to the uniform case. This highlights the
fact that real-world datasets are often skewed in a way that can
heavily destabilize performance of MSD methods. In another
similar case, Raduls2 suffers a 1.5x speed drop on G. In
contrast, Typhoon in Table XI shows consistent performance
across the columns, delivering a speed-up that ranges from
1.5x on D; to 2.8x on G.

Scalability to multiple threads is shown in Table XII.
Among prior work, Raduls2 wins in three columns, while
IPS?Ra owns the top spot for the remaining cases. As
encountered before, decision between previous methods is
difficult, especially considering that IPS?Ra is in-place, while
Raduls2 is not. However, with the introduction of Typhoon,
this choice becomes simpler — our method reliably, and by a
wide margin, yields the best speed. Its current performance is
stifled by insufficient RAM bandwidth, where linear scaling
of the numbers in Table XI suggest a peak rate of 184x8 =
1472M/sec, i.e., 1.5x more than shown in Table XII.

C. Other Platforms and In-Place Experiments

We next examine performance across seven additional CPU
architectures whose characteristics are shown in Table XIII.
The first three entries are server CPUs that use quad-channel
memory, while the other four are dual-channel desktop chips.
Sandy/Ivy Bridge implement SIMD instruction sets up to
AVX, Broadwell/Coffee/Alder Lake support up to AVX2, and
Zen4/Zen5 allow AVX-512. For each of the configurations,

Sort D1 Do Ds Dy Ds g Sort Dy Do Ds Dy Ds g

Gorset [14] 21 46 21 24 21 20 Raduls2 [19] 656 478 394 737 433 491

Polychroniou [25] 27 20 11 25 14 - Regions [22] 365 382 359 351 296 291

Ska [29] 36 83 68 38 67 32 Voracious [24] 402 510 397 405 340 298

Raduls2 [19] 82 65 56 92 58 53 IPS?Ra [4] 409 737 623 418 466 318

Regions [22] 49 45 70 56 72 29 Dovetail [10] 198 206 177 197 197 130

Voracious [24] 57 54 59 53 53 56 IPSo [4] 286 366 351 291 341 286

Vortex [15] 120 102 68 117 63 57 Origami-512 [3] 380 389 395 394 395 392

IPS*Ra [4] 45 % . 4 . 8 Typhoon-16KB | 986 980 998 986 1,001 | 997

Reinald [26] 39 39 39 38 40 37

Fast-Radix [31] 40 40 43 40 43 38

DFR [30] 49 47 - 48 33 - TABLE XIII

pdgsort [23] 31 48 32 31 31 30 MACHINE SPECIFICATIONS FOR IN-PLACE TESTS

IPS%o [4] 31 38 41 30 39 27

Highway-512 [13] 57 57 58 57 57 54 Model Year Family RAM GB

Intel-512 [17] 76 73 75 76 76 69 Intel Xeon E5-2690 2012 | Sandy Bridge (SB) | DDR3-1333 | 256

Origami-512 [3] 55 55 55 55 55 53 Intel Xeon E5-2680v2 | 2013 Ivy Bridge (IB) DDR3-1866 | 192

Typhoon-16KB 184 188 193 136 202 192 Intel Xeon E5-2680v4 | 2016 Broadwell (BW) DDR4-2400 | 128

1.5% 1.8% 1.9% 1.6 2.3% 2.8% Intel 17-8700K 2017 Coffee Lake (CL) DDR4-3200 64

Intel i5-12600K 2021 Alder Lake (AL) DDRS5-6400 | 32
AMD 7950X 2022 Raphael (Zen4) DDR5-6400 | 32
AMD 9600X 2024 | Granite Ridge (ZenS) | DDR5-6400 | 32

we leave 5 GB for background processes and fill the rest with
uniform keys. This leads to sort sizes 27-251 GB and requires
methods that can operate in-place.

Only 10 prior implementations satisfy this criterion. Their
performance on 32-bit keys is shown in Table XIV, where
std::sort is added for reference. Note that we remove Blacher
[6] since its usage of AVX2 gather instructions restricts array
indexes to 4 bytes, which limits the sort to 16 GB. In the
first two columns of Table XIV, Highway [13] is forced to
use SSE, resulting in worse speed (i.e., 21M/sec) than a basic
implementation [14] of the American Flag Sort [21] in the first
row. This is in contrast to earlier Skylake-X results (Table
IX), where [13] was 3.1x faster. The Intel version [17] of
the same algorithm does not support SSE, while both TPSxx
methods crash on inputs above ~128 GB. In the end, Vortex
[15] squeaks out a win on Sandy Bridge and Regions [22] on
Ivy Bridge, but Typhoon in the last row manages to more than
double their performance.

Once AVX2 kicks in on Broadwell, SIMD methods become
more competitive in the third column, with Intel climbing to
the top. Vortex mounts a comeback on Coffee/Alder Lake
in the next two columns, but is still 1.6-1.8x slower than
Typhoon. With a jolt from AVX-512 in the last two columns,
Intel almost catches up to Vortex; however, both methods
are still roughly half of Typhoon’s 388M/sec on Zen4 and
491M/sec on Zen5. Similar observations hold for 64-bit key-
value pairs in Table XV. Outside of Vortex, which uses up
to 1 GB of extra memory and exhibits high volatility on non-
uniform keys, the other prior methods are at least 2.6 x slower
on Coffee Lake, 3.3x on Zen4, and 3x on Zen5.

Overall, results show that across a range of desktop/server
generations, Intel/AMD CPU offerings, and SSE/AVX2/AVX-
512 instruction sets, Typhoon delivers the best performance,
consistently taking the top spot in every comparison and



TABLE XIV
SINGLE-CORE IN-PLACE SPEED (M/SEC) ON 32-BIT KEYS

Sort SB 1B BW CL AL | Zend | Zen5S
Gorset [14] 25 26 24 48 46 71 73
Polychroniou [25] 20 21 23 35 44 49 53
Ska [29] 40 43 41 84 99 116 120
Regions [22] 53 57 52 89 124 121 142
Vortex [15] 54 56 53 162 178 203 265
IPS2Ra [4] - - 47 90 109 110 121
pdgsort [23] 23 24 24 33 40 45 47
IPS%o [4] - - 22 33 34 46 50
Highway [13] 21 22 42 77 106 149 185
Intel [17] - - 63 118 167 177 240
std::sort 7 7 7 9 10 13 13
Typhoon-16KB 120 129 129 265 328 388 491

22x | 23x | 20x | 1.6x | 1.8x | 1.9x | 1.8x

TABLE XV

SINGLE-CORE IN-PLACE SPEED (M/SEC) ON 64-BIT KEY-VALUE PAIRS
Sort SB IB| BW CL AL | Zend | Zen5
Gorset [14] 16 16 15 32 28 47 48
Polychroniou [25] 14 15 15 27 30 33 34
Ska [29] 31 32 33 66 71 80 79
Regions [22] 36 39 47 74 84 96 99
Vortex [15] 29 31 31 133 175 187 239
IPS2Ra [4] - - 36 77 80 85 88
pdgsort [23] 17 19 20 29 41 47 47
IPS%o [4] - - 19 31 34 44 47
Highway [13] 10 11 18 35 46 92 123
Intel [17] - - 22 43 60 89 135
std::sort 7 7 7 9 10 13 13
Typhoon-16KB 76 79 83 197 233 321 404

2.1x | 20x | 1.8x | 1.5x | 1.3x | 1.7x | 1.7x

finishing 32-bit sorts 38 x faster than std::sort on AMD Zen5.
Furthermore, it is highly skew-resilient, as well as the only
method in this comparison that is both stable and in-place.
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VI. CONCLUSION

We developed a novel LSD sort called Typhoon and demon-
strated that it worked remarkably fast across a variety of CPU
architectures, memory configurations, single/multi-core sce-
narios, input skew, and array sizes. Not only that, but Typhoon
is also stable, in-place, and distribution-insensitive. Future
work involves handling longer keys and testing Typhoon in
big-data frameworks/databases.
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