
VizQ: A System for Scalable Processing of
VisibilityQueries in 3D Spatial Databases

Arif Arman1, Mohammed Eunus Ali2, Farhana Murtaza Choudhury3, and Kaysar Abdullah4
1−2,4Bangladesh University of Engineering and Technology, Bangladesh

3RMIT University, Australia
arman@cse.uiu.ac.bd,eunus@cse.buet.ac.bd,farhana.choudhury@rmit.edu.au,kaysar@cse.buet.ac.bd

ABSTRACT
In this demonstration, we present VizQ, an efficient, scalable, and
interactive system to process and visualize a comprehensive collec-
tion of novel visibility queries in the presence of obstacles in 3D
space. Specifically, we demonstrate four types of query processing:
(i) k Maximum Visibility Query (kMVQ), that finds k locations with
the maximum visibility of a target object (ii) Visibility Color Map
(VCM), where each point in the space is assigned a color value
denoting the visibility measure of the target (iii) Continuous Max-
imum Visibility (CMV) that continuously finds the location that
provides the best view of a moving target, and (iv) Text Visibility
Color Map (TVCM), where VCM is generated considering readabil-
ity of text data displayed on a target. We are the first to propose
efficient algorithms to run all of the above four types of visibility
queries in the context of a large number of 3D obstacle database.
We exploit human visibility metrics to design our data structures
and algorithms to efficiently process queries, and our approaches
outperform baseline approaches in several order of magnitude both
in terms of I/Os and processing time. The link of our demonstration
video is https://youtu.be/rcizJtFvQfU.

CCS CONCEPTS
• Information systems → Information retrieval query pro-
cessing; Location based services;

KEYWORDS
Visibility query; Spatial database; Location based services

1 INTRODUCTION
The 3D models of real-life urban structures are becoming widely
available through the popular mapping services, such as Google
Maps, Google Earth, and OpenStreetMap. Such availability enables
us to address many practical applications that require visibility com-
putation in the presence of 3D obstacles. For example, (i) a tourist
may wish to find a location to enjoy the best view of a tourist
attraction, or a hotel with the best view of the city skyline; (ii) a
security company may want to find the suitable positions to place

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CIKM’17 , November 6–10, 2017, Singapore, Singapore
© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-4918-5/17/11. . . $15.00
https://doi.org/10.1145/3132847.3133190

surveillance cameras in a city; (iii) the police may want to track a
car with surveillance cameras, so they need to continuously switch
to the camera that provides best visibility of the car; (iv) an adver-
tisement company may want to check the visibility of a billboard
from the surrounding areas to decide on the billboard’s position
and suitable font size. In these examples, several infrastructures
such as buildings can obstruct the view of the cameras/viewers.

The existing studies in computation geometry and spatial databases
([5]) regard visibility as a binary notion, where a point is either
visible or not from another point. In contrast, all of the aforemen-
tioned applications require visibility quantification as a continuous
notion. Such quantification is important, because a billboard can
be visible, but may not be readable from a viewpoint.

The visibility calculation and the processing of related queries
are much more challenging than that of distance-based spatial
queries due to the complex correlations among the objects, as the
visibility of an object from a viewer depends on the presence of other
objects in between them. Although there are many objects in the
database, only a few objects around a viewer may obstruct the view
of the other objects. So an efficient method to determine relevant
obstacles is very crucial to the performance of the visibility based
algorithms. In this paper, we demonstrate four visibility queries
and their corresponding efficient processing algorithms that focus
on retrieving only the obstacles necessary (e.g., affect the final
result) for calculation, and thus reduce the total I/O cost and the
processing time. The key ideas of all these approaches is to exploit
human visibility metrics in designing smart data structures and
algorithms that facilitate faster processing of visibility queries in
the context of a large 3D obstacle database.

Specifically, in this demonstration, we present VizQ, an interac-
tive system that allows users to process and visualize the steps of
four novel visibility queries, namely (i) k Maximum Visibility Query
(kMVQ), (ii) Visibility Color Map (VCM), (iii) k Continuous Maximum
Visibility (kCMV), and (iv) Text Visibility Color Map (TVCM).

The algorithms of the first three queries are based on the pre-
vious works from our group. kMVQ [4] finds k locations from a
set of query locations that maximize the visibility of a target ob-
ject T in the presence of obstacles, i.e., addresses the first type of
example applications mentioned above. To address the second type
of example applications that require the visibility from/of every
point of a continuous space, Choudhury et al. [1] propose a scalable
technique to partition the space in a visually meaningful way and
generate a heat-map of the space, the VCM, by assigning a color to
each partition according to their visibility. The partial visibility is
not taken into account in [1], i.e., T is considered as visible from a
point p if T is entirely visible from p. Rabban et al. [6] proposed a
technique that alleviates this limitation. Haider et al. [7] address the

Demonstration CIKM’17, November 6-10, 2017, Singapore

2447

https://youtu.be/rcizJtFvQfU
https://doi.org/10.1145/3132847.3133190

T

o1

o2

o7
o6

R1
o3

o4R2

o5

R3

q

T

o1

o2

o7
o6

R1
o3

o4R2

o5

R3

q
o1 retrieved o2, o3 retrieved

T

o1

o2

o7
o6

R1
o3

o4R2

o5

R3

q

Without considering
 obstacles

Figure 1: Updating visible region of a query

continuous version of the kMVQ query, denoted as kCMV, where
the problem is to continuously report the k locations that maximize
the visibility of a moving target (the third type of example appli-
cation). In addition to the queries presented in our previous works
([1, 4, 6, 7]), we include a new query type, TVCM, that generates VCM
by considering the readability of text displayed on the target.

We develop VizQ as an interactive system that demonstrates the
details steps of the algorithms visually. It simulates the index of
the objects, the object retrievals from disk, the pruning techniques,
along with the computation of the visibility to answer the queries.
The I/O costs for processing each query are also reported. The users
are given options to upload their own datasets, and set different
parameters, such as the target, the number of results to return, etc.

Note that, though some existing softwares [2, 3] used in urban
planning and architecture facilitate platforms to create and render
3D objects with functionalities like animation and walk-through,
they do not provide any functionality for visibility query processing.
Hence, VizQ can be used as a complementary system with these
softwares to enable them answering realistic visibility queries that
require quantification of visibility in a 3D space.

2 OVERVIEW OF THE APPROACHES
The set O of obstacles are indexed with an R*-Tree. We first intro-
duce a visibility metric, and then the notion of visible region, which
is used to avoid retrieving the unnecessary obstacles that do not
affect the result of a query.

Visibility metric. We consider the visual angle, i.e., the angle
formed at a lens by an object as the measure of visibility. The value
depends on the distance and the viewing angle between the object
and the viewer, calculated as,

V = 2arctan(Sα /D)

where Sα = α
90o × S . Here, S is the original length of T ; D and α

are the distance and angle between the viewer and the target object
T , respectively.

Visible region (VR). A visible region w.r.t a target T and a
query location q consists of the points in space such that any point
p in VR, p is visible to both q and any point inT . Only the obstacles
overlapping with VR can affect the visibility.

2.1 kMVQ
Three different approaches, namely, query centric distance (QD),
query centric visible region (QV) and target centric distance (TD)
based approach are proposed in [4], where the approaches differ in
their retrieval orders of the obstacles. Starting from a query point,
the QD and QV approaches retrieve obstacles incrementally based
on their distances from the query point and based on their effects

on visible region, respectively. The TD approach retrieves obstacles
incrementally based on their distances from the target. As the exper-
imental results reported in [4] show that QD outperforms the other
approaches, we present the QD approach in this demonstration.
The major steps of the query centric distance based approach (QD)
to answer the kMVQ are:

• Best-first search: A visibility estimate of each query point
is computed by considering a subset of relevant obstacles,
and is incrementally updated by considering one node/obstacle
at a time. In each iteration, we consider the query location q
with the maximum visibility estimation.

• Obstacle pruning: As a nearby obstacle is likely to reduce
the VR more, we retrieve the obstacles in an increasing order
of their distances from q, and update the VR. For each q, we
maintain a priority queue of obstacles and MBRs based on
their distances from q. If an MBR of the R*-tree or an obstacle
is completely outside VR, it can be safely pruned.

• Early termination: If the priority queue of obstacles is
empty for the current top ranked q, no other query location
can have better visibility than q. We terminate the process
when k such locations are found.

Figure 1 shows the visibility region computation of a target T
w.r.t. a query point q. The objects that intersect with the initial
visibility region are o1,o2,o3,o7, and o8. The objects are retrieved
based on the distance from q. When objects o1 and o2 are retrieved,
they obstruct o7 and o8 from q, therefore discarded from further
consideration.

2.2 VCM
We propose a space partitioning technique that avoids computing
the visibility of a large number of points, and a retrieval technique to
prune unnecessary obstacles to construct VCM.We also present two
approximations of the partitions to improve efficiency at the cost of
guaranteed error bounds. Our approach effectively prunes a large
number of obstacles and significantly reduces I/Os while computing
the VCM. VCM experiments with real and synthetic 3D datasets
demonstrate that our approach outperforms the straightforward
approach (that computes the visibility of every cell by considering
all obstacles between the cell and the target) by 5 − 6 orders of
magnitude in terms of total processing time. We process the query
in the following way:

• Space partitioning: We exploit the key insight that a hu-
man cannot differentiate the visual appearance of an object
from spatially close set of points within a threshold. Thus,
we partition the space based on the distance and angle from
T into a set of cells such that the perceived visibility of T is
indistinguishable from the points in a cell. This significantly
reduces computational overhead in contrast to computing
the visibility from each discrete point or from each cell.

• Obstacle pruning:We perform a plane sweep to determine
the combined effect of multiple obstacles, and efficiently
prune the unnecessary obstacles.

• Visibility calculation:We determine the visible portions of
T from each cell that are either completely or partially visible
to T , compute their corresponding visibility and represent

Demonstration CIKM’17, November 6-10, 2017, Singapore

2448

the measure as a color. If a cell is completely invisible, the
cell is colored as black.

2.3 kCMV
The key challenge of the kCMV query is that, as the target object
T is continuously in motion, the visibility of T from each query
location continuously changes, and we need to update their ranking
and the results. The approach consists of a pre-processing step and
an incremental update step.

• Pre-processing step: This step consists of generating the
aggregated visible region (AVR) and blocking set (BS) of the
query locations. AVR is a region formed by overlapping the
VRs of one or more query points and is disjoint from all other
AVRs. Any point within an AVR is visible only from those
query points whose VRs formed that AVR. The blocking set
of a query location q is the set of objects that lie in the VR
of q, i.e., the objects that can affect the visibility of T from
q. The aggregated blocking set (ABS) of an AVR is the set of
obstacles that may affect visibility when target lies in that
AVR. In the pre-processing step, the AVRs are constructed
and indexed in a R*-Tree.

• Incremental update step: At any point of time, the target
intersects with/resides in one or multiple AVRs. If target
moves at least for a threshold amount, at first we check if the
target has changed any of those AVRs. If there is no change,
then we update the rank of the query points of those AVRs
with the help of the objects in their blocking sets. If the target
intersects with any new AVR, the visibility of T from the
query points in that AVR is calculated and the ranking of
the query locations are updated. Similarly, if T leaves any
AVR, the query locations of that AVR is excluded from the
result and the result needs to be updated.

2.4 TVCM
In this demonstration paper, we present a new extension of the VCM
problem where we need to determine the readability of text data
displayed on a target while constructing the VCM. We use Snellen
chart [8] to determine the minimum font size that is readable from a
certain distancewhen the observer is facingT at 90o angle. Then, for
each cell c of the VCM, we apply the oblique projection technique
to determine the perceived font size required to be readable from c .
If this perceived font size is larger than the user selected size, the
text is considered as not readable from that cell. Here, we only need
to consider the face of T that displays the text.

To incorporate a real billboard scenario, in TVCM we also incor-
porate multi-line texts, where each line of text has a different font
size represented with a unique color. In that case, we create TVCM
for each line of text separately and superimpose them to generate a
combined TVCM, where each cell gets its color by superimposing
the visibility color value for each line of text.

3 DEMONSTRATION
VizQ is implemented as a web application using Three.js WebGL
framework with C++ backend. We demonstrate VizQ using 3D
datasets. User interface of VizQ consists of two panels:

Settings Panel. This is the left panel of the user interface that
includes options to select from the four modes as the query type to

Figure 2: k Maximum Visibility Query

Figure 3: Visibility Color Map

Figure 4: Text Visibility Color Map

be processed, (i) kMVQ, (ii) VCM, (iii) TVCM, and (iv) kCMV. All
modes require the user to select a spatial dataset of 3D objects. The
user may select one from the list of existing datasets in the server
or upload a dataset from local file system.

In kMVQ mode, VizQ allows the user to select a set of 3D query
locations, either from the existing database, or by uploading a new
set. VizQ also enables user to plot query locations in the visualiza-
tion panel interactively through mouse-clicks. The user can click
over an object from the dataset to select as the target T , and give
an input for k . The rest of the objects are considered as obstacles.
The kMVQ settings also include an input for k , the number of query
locations to return.

In VCM mode, the user can select an object as the target T and
an axis along which VCM needs to be generated. In addition, the
settings in TVCM mode allow the user to add text data using multi-
ple text boxes (muti-line texts with varying fonts). These texts are
considered as displayed in the face of T along the picked axis.

Demonstration CIKM’17, November 6-10, 2017, Singapore

2449

(a)

(b)

Figure 5: Continuous Maximum Visibility Query

In CMVQ mode, the user can specify field of view and the direc-
tion of viewpoints to calculate visible region of each query location.
The user can select a target path by uploading a file where path
can be specified as a series of coordinates at different timestamps.
The user is required to select an obstacle set, target path and query
location set and click the process button for pre-computation. VizQ
notifies the user via the console when pre-computation is complete.

The simulation of the selected query processing starts when the
user clicks the Run button. If any required parameter is missing
(e.g., target not set), the appropriate warning message is shown
in the console. When a valid query is issued, VizQ updates the
visualization panel accordingly.

Visualization Panel. This is the right panel of the user inter-
face that displays a 3D world to the user. VizQ integrates a mouse-
controlled dynamic camera including rotate, pan, and zoom opera-
tions. This provides the user the freedom to visualize from different
viewing positions. When the user loads a dataset as the object set,
VizQ displays each object with different colors. Once the dataset
is loaded, VizQ allows the user to select an object as the target T
through mouse-clicks. The selected target is shown in black and
the information regarding T is shown in console.

In kMVQ mode, each query location q is shown by a red loca-
tion marker. A transparent green region represents the VR of a q.
VizQ presents the VR of one query location at a time, starting from
the top ranked one according to visibility estimation. The user can
view the VR of the subsequently ranked query location by pressing
the key ‘q’. The user can also view the VR of a q by clicking on
the corresponding marker. The details of the selected q (e.g. rank,
visibility) is displayed in the settings panel console. The visible por-
tions ofT from the selected q is colored as white, and the obstructed
portions are colored as black.

Each cell inVCM is coloredwith a shade of grey where a black cell
means T is completely invisible from that cell. The user can move
the VCM plane back and forth (using ‘v’ or ‘b’ keys) to visualize
the occlusion effects of the obstacles. The plane sweep algorithm
can be better comprehended by continuously moving the plane
away from T . In TVCM mode, VizQ displays the provided texts in
their corresponding font sizes on the selected face of T . The color
convention is the same as VCM. As the readability decreases with
the increase of distance, the TVCM may turn completely black at
some point if the user continues to move the plane farther away.

ForCMVQ, at each timestamp, VizQ displays the updated location
of the target, where the target is colored as black with a green
marker. The visible region of the best viewpoint is shown in blue.
VizQ also displays details such as the visibility measure of the best
viewpoint in the console. If the best viewpoint changes due to target
movement, VizQ updates the display accordingly in real time.

Demonstrated Scenarios. Fig. 2 shows a screenshot ofkMVQpro-
cessing demonstration that shows: (i) The visible region of a selected
query location in green, where the obstructed portion of the target
is shown in black; (ii) The top-3 query locations are shown with a
message bubble, and their visibility scores are shown in the con-
sole. Fig. 3 and Fig. 4 each shows a screenshot of VCM, where the
visibility from different points of space are shown with shades of
grey along a selected axis. In addition, Fig. 4 shows the text on a
face of the target, and the VCM adjusted for the size of the text.
The continuous maximum visibility is demonstrated in Fig. 5 for
two different locations of the moving target, where the result is
updated for the corresponding location.

4 CONCLUSION
We develop VizQ, a system that demonstrates the internal mech-
anism of the efficient algorithms of four important and novel vis-
ibility queries in 3D space. The system simulates the obstacle re-
trievals and the corresponding changes in visibility. The users
can issue the queries in an interactive way and monitor differ-
ent levels of details. The source code is publicly available in github
(https://github.com/arif-arman/vizq), which can be adapted in real-
life applications.

ACKNOWLEDGMENTS
This research is funded by ICT Division - Government of the Peo-
ple’s Republic of Bangladesh.

REFERENCES
[1] Farhana Murtaza Choudhury, Mohammed Eunus Ali, Sarah Masud, Suman Nath,

and Ishat E. Rabban. 2014. Scalable visibility color map construction in spatial
databases. Inf. Syst. 42 (2014), 89–106.

[2] Cityengine. 2008. http://www.esri.com/software/cityengine. (2008).
[3] Lumion. 2012. http://lumion3d.com/urban-planning-software. (2012).
[4] Sarah Masud, Farhana Murtaza Choudhury, Mohammed Eunus Ali, and Sarana

Nutanong. 2013. Maximum visibility queries in spatial databases. In ICDE. 637–
648.

[5] S. Nutanong, E. Tanin, and R. Zhang. 2010. Incremental Evaluation of Visible
Nearest Neighbor Queries. TKDE 22, 5 (2010), 665–681.

[6] Ishat E. Rabban, Kaysar Abdullah, Mohammed Eunus Ali, and Muhammad Aamir
Cheema. 2015. Visibility Color Map for a Fixed or Moving Target in Spatial
Databases. In SSTD. 197–215.

[7] Ch. Md. Rakin Haider, Arif Arman, Mohammed Eunus Ali, and Farhana Murtaza
Choudhury. 2016. Continuous Maximum Visibility Query for a Moving Target.
In ADC. 82–94.

[8] H. Snellen. 1862. Probebuchstaben zur Bestimmung der Sehschärfe. Utrecht
(1862).

Demonstration CIKM’17, November 6-10, 2017, Singapore

2450

https://github.com/arif-arman/vizq
http://www.esri.com/software/cityengine
http://lumion3d.com/urban-planning-software

	Abstract
	1 Introduction
	2 Overview of the approaches
	2.1 kMVQ
	2.2 VCM
	2.3 kCMV
	2.4 TVCM

	3 Demonstration
	4 Conclusion
	Acknowledgments
	References

